项目介绍
客户需要银行在6个月内购买100万股。每个月有22个交易日,银行可以在每个月的最后一个交易日(第22、44、66、88、110、132天)终止执行,如果已购买100万股。假设资产在第一天和银行终止执行的当天之间的平均价格为p。那么银行的利益将为(p - d)* 100万,减去购买100万股的成本。资产价格S(t)遵循几何布朗运动,其中dS(t)/S(t) = σdw(t),S(0) = 100,σ = 40%,Wt是标准布朗运动。
(1) 找到最优的每日执行策略以最大化银行的利益。(强化学习)
(2) 找到银行的预期利益和使预期值为0的折现率d。(蒙特卡洛模拟)
关键词
- 股票购买
- 强化学习
- 几何布朗运动
- 折现率
- 蒙特卡洛模拟
- 交易日
- 资产价格路径
- Q-learning
项目思路
强化学习思路
在这个项目中,我们采用强化学习作为优化银行购买策略的方法。以下是项目的强化学习思路:
- 定义状态空间:
- 将每个交易日看作一个状态,即总共有132个状态(6个月,每个月22个交易日)。
- 状态表示:可以包括当前股票价格、已购买股数等信息。
- 定义动作空间:
- 每个状态下银行可以采取的动作包括购买股票的数量或者不购买。
- 动作选择的离散化:确定每次购买的股票数量的离散选择。
- 定义奖励函数:
- 奖励函数用于评估银行每个决策的好坏。
- 奖励可以基于利润,定义为购买后的股票卖出利润减去购买成本。
- 定义状态转移概率:
- 根据股票价格的变动模型(几何布朗运动),计算每个状态之间的转移概率。
- 转移概率可以基于当前股价和前一天的股价,使用几何布朗运动的性质计算。
- 使用强化学习算法进行训练:
- 使用Q-learning、SARSA等强化学习算法。
- 在每个交易日,银行根据当前状态选择最优动作,执行并更新Q值。
- 通过与环境交互,不断迭代学习,更新策略和价值函数,以找到最优的每日执行策略。
蒙特卡洛模拟思路
蒙特卡洛模拟是为了找到银行的预期利益和确定使预期值为0的折现率。以下是项目的蒙特卡洛模拟思路:
- 定义模拟时间段:
- 设定模拟的时间段,即6个月的交易日。
- 每个月有22个交易日,总共模拟132个交易日。
- 生成资产价格路径:
- 使用几何布朗运动模型生成资产价格的路径。
- 利用随机数生成器模拟价格的变动,确保符合给定的几何布朗运动方程。
- 计算银行的利益:
- 对于每个交易日,根据银行的执行策略计算银行的利益。
- 利益计算基于购买后的股票卖出利润减去购买成本。
- 多次模拟并累加利益:
- 重复进行多次模拟,例如1000次,以获得对于每次模拟的不同资产价格路径下的银行利益。
- 累加每次模拟的银行利益,以及计算平均值作为预期利益的估计值。
- 寻找使预期值为0的折现率d:
- 在模拟中尝试不同的折现率d。
- 对于每个折现率d,计算模拟中的预期利益。
- 通过二分法或其他优化算法,找到使预期值为0的折现率d的估计值。
具体代码
StockTradingEnvironment是一个OpenAI Gym的环境类,用于模拟股票交易的环境。它包括了一个股票价格的模型,允许代理根据环境状态执行买入或持有的动作,并根据这些动作获得奖励。该环境类可用于强化学习算法的训练,例如Q-learning或深度强化学习,以优化股票交易策略。
class StockTradingEnvironment(gym.Env):
def __init__(self, num_shares=1000000, num_days=132, initial_price=100, volatility=0.4, discount_factor=0.99):
"""
初始化股票交易环境
参数:
num_shares (int): 初始股票数量
num_days (int): 总交易天数
initial_price (float): 初始股票价格
volatility (float): 价格波动率
discount_factor (float): 折扣因子
"""
self.num_shares = num_shares # 初始股票数量
self.num_days = num_days # 总交易天数
self.initial_price = initial_price # 初始股票价格
self.volatility = volatility # 价格波动率
self.discount_factor = discount_factor # 折扣因子
self.current_day = 0 # 当前交易天数
self.current_price = initial_price # 当前股票价格
self.done = False # 是否结束交易
def step(self, action):
"""
执行一个动作并返回新状态、奖励和是否结束的标志
参数:
action (int): 动作 (0表示持有股票,1表示买入股票)
返回:
state (int): 新状态 (当前交易天数)
reward (float): 奖励
done (bool): 是否结束交易
info (dict): 其他信息 (空字典)
"""
if self.done:
raise ValueError("Episode is done. Please reset the environment.")
if self.current_day >= self.num_days:
self.done = True
return self._get_state(), 0, self.done, {
}
if action == 1: # 买入
self.num_shares -= 1
self.current_day += 1
self.current_price *= np.exp(self.volatility * np.random.normal(0, 1))
reward = (self.current_price - self.initial_price) * self.num_shares - action * self.current_price
return self._get_state(), reward, self.done, {
}
def