Python量化交易学习笔记(14)——均线交叉策略

本文使用均线交叉策略,对平安银行自2018年1月1日至2020年2月28日的日线数据进行回测分析。

策略会用到短期移动均线及长期移动均线两个技术指标,在backtrader自定义策略init方法中,添加如下代码计算均线指标并判断交叉情况:

sma1 = bt.ind.SMA(period=self.p.pfast)  # 短期均线
sma2 = bt.ind.SMA(period=self.p.pslow)  # 长期均线
self.crossover = bt.ind.CrossOver(sma1, sma2)  # 交叉信号

当短期均线向上金叉长期均线后进行买入,当长期均线向下死叉短期均线后卖出,在策略的next方法下添加如下代码如:

if not self.position:  # 不在场内,则可以买入
    if self.crossover > 0:  # 如果金叉
        self.buy()  # 买入
elif self.crossover < 0:  # 在场内,且死叉
    self.close()  # 卖出

回测初始资金100000,单笔操作单位5000股,佣金千分之一。

对短期均线及长期均线周期进行不同选择,通过绘图的方式查看回测结果。

  1. 短期均线5,长期均线10:
    在这里插入图片描述

回测最终资产:97850.83

  1. 短期均线5,长期均线20:

在这里插入图片描述

回测最终资产:99096.03

  1. 短期均线5,长期均线60:
    在这里插入图片描述

回测最终资产:116776.70

  1. 短期均线10,长期均线60:
    在这里插入图片描述

回测最终资产:110485.50

  1. 短期均线20,长期均线60:
    在这里插入图片描述

回测最终资产:101424.75

均线交叉策略代码:

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import datetime  # 用于datetime对象操作
import os.path  # 用于管理路径
import sys  # 用于在argvTo[0]中找到脚本名称
import backtrader as bt # 引入backtrader框架

# 创建策略
class SmaCross(bt.Strategy):
    # 可配置策略参数
    params = dict(
        pfast=5,  # 短期均线周期
        pslow=10   # 长期均线周期
    )
    def __init__(self):
        sma1 = bt.ind.SMA(period=self.p.pfast)  # 短期均线
        sma2 = bt.ind.SMA(period=self.p.pslow)  # 长期均线
        self.crossover = bt.ind.CrossOver(sma1, sma2)  # 交叉信号
    def next(self):
        if not self.position:  # 不在场内,则可以买入
            if self.crossover > 0:  # 如果金叉
                self.buy()  # 买入
        elif self.crossover < 0:  # 在场内,且死叉
            self.close()  # 卖出
cerebro = bt.Cerebro()  # 创建cerebro
# 先找到脚本的位置,然后根据脚本与数据的相对路径关系找到数据位置
# 这样脚本从任意地方被调用,都可以正确地访问到数据
modpath = os.path.dirname(os.path.abspath(sys.argv[0]))
datapath = os.path.join(modpath, '../TQDat/day/stk/000001.csv')
# 创建价格数据
data = bt.feeds.GenericCSVData(
        dataname = datapath,
        fromdate = datetime.datetime(2018, 1, 1),
        todate = datetime.datetime(2020, 2, 29),
        nullvalue = 0.0,
        dtformat = ('%Y-%m-%d'),
        datetime = 0,
        open = 1,
        high = 2,
        low = 3,
        close = 4,
        volume = 5,
        openinterest = -1
        )
# 在Cerebro中添加价格数据
cerebro.adddata(data)
# 设置启动资金
cerebro.broker.setcash(100000.0)
# 设置交易单位大小
cerebro.addsizer(bt.sizers.FixedSize, stake = 5000)
# 设置佣金为千分之一
cerebro.broker.setcommission(commission=0.001)
cerebro.addstrategy(SmaCross)  # 添加策略
cerebro.run()  # 遍历所有数据
cerebro.plot()  # 绘图

为了便于相互交流学习,新建了微信群,感兴趣的读者请加微信。
在这里插入图片描述

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值