外卖返利系统/美团/饿了么外卖CPS联盟返利公众号小程序核心源码

我们都知道,目前两家巨头饿了么和美团点外卖都可以获得返现,其中饿了么是返利6%,美团是返利3-5%,具体要根据活动来。

也就是说按正常一个人用户点餐,你可以获得每笔外卖的CPS返利佣金,而且外卖的用户粘性极高,已经成了很多淘客的首选,不巧前段时间有客户找我分析开发了一个项目,主要是公众号和小程序(后期还说要开发APP)实现用户一次注册同步关联的跟单返利。

从核心功能方面来说,主要还是实现自动跟单返利,获得CPS交易佣金、另一个是用户角色等级的实现,例如 普通用户、团长用户和联合运营用户角色,每个角色都代表了不同的等级,而要升级这些等级就必须要完成自购 或 自己团队的订单量,作为考核升级,每个升级的用户角色实现就是获得了更高的佣金分成比例和真正裂变赚钱的机会,行业里面有的称为代理商,这样的公众号和小程序渠道,在微信生态下是非常好的裂变,可以迅速获得用户群做社群运营。

外卖CPS小程序源码分享

外卖券外卖省省外卖探探美团饿了么外卖联盟优惠券小程序系统软件开发源码 美团/饿了么外卖CPS联盟返利公众号小程序裂变核心源码

今天和大家分享下外卖CPS项目,这个其实和做淘客有点类似,淘客是别人通过你的推广购物产生佣金,同理外卖CPS也就是别人通过你的推广点了外卖产生佣金,和做淘客一个原理

饿了么、美团优惠开发(外卖cps,三级裂变源码)

源码或搭建

http://y.mybei.cn

截图

在这里插入图片描述
在这里插入图片描述

功能列表

  • 特价电影票

  • 饿了么外卖(3个红包)

  • 美团外卖

  • 美团优选(1分钱买菜)

  • 购物返利(淘宝,拼多多,京东)

  • 话费优惠充值(92折,慢充)

  • 火车票优惠

  • 滴滴打车优惠

  • 小程序广告收益(流量主)

  • 公众号绑定

  • 更多功能…

作者联系方式

  • 交流交流感情也好呀~

  • 代搭建,源码都可以出,好谈~

  • 转介绍,代理,都行,作者不会亏待你~

步骤

  • 下载以上源代码到本地

http://mtw.so/6wav8W

  • 修改为你自己的微信小程序,打开 /dist/pages/ele/index.js
    在这里插入图片描述
  • 微信小程序->开发管理->开发设置 添加 request的域名: 地址:
### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值