图像融合技术就是将配准过后的图像融合成一幅宽视角、大场景的图像。但由于图像采集过程中各种因素的影响,例如光照、角度、距离等,从而导致图像间的光照不均匀、颜色上不连续。
经过配准以后,参考图像和输入图像已经在同一个坐标系下,如果只是取某一幅图像的信息或者简单地将二者重叠区域的像素进行叠加,在图像拼接处会产生图像不连续的现象,有明显的拼接缝隙,如图所示。

要实现图像的无缝拼接,必须采用图像融合技术对图像的重叠部分进行平滑处理,使两幅图在重叠区域平滑过渡,拼接后的图像在颜色和亮度上保持一致,视觉效果好。
一、传统融合算法
图像融合就是尽可能地利用图像间的独有细节信息和重叠部分的信息,最终得到一幅有丰富有用细节的新图像。经典的融合算法有直接平均和加权平均。
1、直接平均
该融合算法的基本思路是直接从图像间的重叠区域中各提取一半的信息,作为该部分的融合结果,计算公式见式:

图像融合技术用于实现无缝全景图像拼接,处理光照、角度等因素导致的图像不连续。文章介绍了直接平均、加权平均(包括渐入渐出和帽子函数)等传统融合算法,以及最佳缝合线算法(基于颜色差异和几何差异的搜索准则)和泊松融合算法,旨在减少拼接缝隙,确保颜色和亮度的一致性。
订阅专栏 解锁全文
9084

被折叠的 条评论
为什么被折叠?



