算术基本定理的证明

本文介绍了算术基本定理的证明,利用反证法和良序原理来论证大于1的自然数可以唯一地表示为质数的乘积。通过分析合数的性质,指出合数可以不断分解直至得到质数,从而揭示了自然数的质因数分解特性。同时,探讨了良序原理在数学和计算机科学中的应用,特别是在证明算法可终止性上的作用。
摘要由CSDN通过智能技术生成

以下来源于百度搜索:
算术基本定理的最早证明是由欧几里得给出的。而以下是用现代的陈述方式去证明。 待证命题:大于1的自然数必可写成质数的乘积。用反证法:假设存在大于1的自然数不能写成质数的乘积,把最小的那个称为n。非零自然数可以根据其可除性(是否能表示成两个不是自身的自然数的乘积)分成3类:质数、合数和1。
首先,按照定义,n大于1。其次,n不是质数,因为质数p可以写成质数乘积:p=p,这与假设不相符合。因此n只能是合数,但每个合数都可以分解成两个小于自身而大于1的自然数的积。设其中a和b都是介于1和n之间的自然数,因此,按照n的定义,a和b都可以写成质数的乘积。从而n也可以写成质数的乘积。由此产生矛盾。因此大于1的自然数必可写成质数的乘积。
关于定理证明需要注意几点的有:1.(注意从两数相乘可以得一合数并且两数小于这个合数入手) 这个集合中肯定有一个最小值为n,由于根据假设所以n一定为合数,又任意大于1的合数都可以表示为两个数的乘积,又a b小于n所以不在该假设集合内(n为满足假设最小的合数),所以a. b必定可以写成质数的乘积,因为不在这个集合内!由于不在该集合内,所以只要乘积中包含质数就满足不在集合内这个条件,那么可以写成质数乘质数或者质数成合数,又合数可再分且不在该集合内,所以还可以写成质数乘质数或者质数乘合数,若还是合数那么继续分反正必须包含一个质数,又合数不可能无限分割下去,所以最后由除法定义一定是质数。于是这个最小值就可以由质数表示了。接着集合内的下一个最小值同理可证。所以这个集合内的所有元素都可以表示为质数的乘积
其实也可以这么想,如果一个数是不能表示为质数的乘积,那么就是合数乘合

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值