文章目录
正态总体参数的区间估计
X ∼ N ( μ 1 , σ 1 2 ) X\sim N(\mu_1,\sigma_1^2) X∼N(μ1,σ12)
Y ∼ N ( μ 2 , σ 2 2 ) Y\sim N(\mu_2,\sigma_2^2) Y∼N(μ2,σ22)
单个正态整体参数
μ \mu μ
x ‾ − μ σ / n ∼ N ( 0 , 1 ) x ‾ − μ s / n ∼ t ( n − 1 ) \frac{\overline{x}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)\\ \frac{\overline{x}-\mu}{s/\sqrt{n}}\sim t(n-1) σ/nx−μ∼N(0,1)s/nx−μ∼t(n−1)
σ \sigma σ
1 σ 2 ∑ i = 1 n ( x i − μ ) ∼ χ 2 ( n ) s 2 ( n − 1 ) σ 2 = 1 σ 2 ∑ i = 1 n ( x i − x ‾ ) ∼ χ 2 ( n − 1 ) \frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)\sim \chi^2(n)\\ \frac{s^2(n-1)}{\sigma^2}=\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\overline{x})\sim\chi^2(n-1) σ21i=1∑n(xi−μ)∼χ2(n)σ2s2(n−1)=σ21i=1∑n(xi−x)∼χ2(n−1)
两个正态总体分布「均值差、方差比 」的区间估计
μ 1 − μ 2 \mu_1-\mu_2 μ1−μ2
( x ‾ − y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n + σ 2 2 m ∼ N ( 0 , 1 ) \frac{(\overline{x}-\overline{y})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n}+\frac{\sigma_2^2}{m}}}\sim N(0,1) nσ12+mσ22(x−y)−(μ1−μ2)∼N(0,1)
( x ‾ − y ‾ ) − ( μ 1 − μ 2 ) s w 1 n + 1 m ∼ t ( n + m − 2 ) s w 2 = ( n − 1 ) s 1 2 + ( m − 1 ) s 2 2 n + m − 2 s w = s w 2 \frac{(\overline{x}-\overline{y})-(\mu_1-\mu_2)}{s_w\sqrt{\frac{1}{n}+\frac{1}{m}}}\sim t(n+m-2)\\ s_w^2=\frac{(n-1)s^2_1+(m-1)s_2^2}{n+m-2}\\ s_w=\sqrt{s_w^2} swn1+m1(x−y)−(μ1−μ2)∼t(n+m−2)sw2=n+m−2(n−1)s12+(m−1)s22sw=sw2
σ 1 2 / σ 2 2 \sigma_1^2/\sigma^2_2 σ12/σ22
s 1 2 / σ 1 2 s 2 2 / σ 2 2 ∼ F ( n − 1 , m − 1 ) \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}\sim F(n-1,m-1) s22/σ22s12/σ12∼F(n−1,m−1)