参数估计

本文介绍了正态总体参数μ和σ的区间估计方法,包括使用样本均值和标准差的Z检验和t检验。同时,详细阐述了两个正态总体的均值差和方差比的区间估计,涉及到样本量、方差和自由度的计算,以及F分布的应用。这些方法在统计推断中至关重要,为数据分析提供了可靠依据。
摘要由CSDN通过智能技术生成

正态总体参数的区间估计

X ∼ N ( μ 1 , σ 1 2 ) X\sim N(\mu_1,\sigma_1^2) XN(μ1,σ12)

Y ∼ N ( μ 2 , σ 2 2 ) Y\sim N(\mu_2,\sigma_2^2) YN(μ2,σ22)

单个正态整体参数

μ \mu μ

x ‾ − μ σ / n ∼ N ( 0 , 1 ) x ‾ − μ s / n ∼ t ( n − 1 ) \frac{\overline{x}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)\\ \frac{\overline{x}-\mu}{s/\sqrt{n}}\sim t(n-1) σ/n xμN(0,1)s/n xμt(n1)

σ \sigma σ

1 σ 2 ∑ i = 1 n ( x i − μ ) ∼ χ 2 ( n ) s 2 ( n − 1 ) σ 2 = 1 σ 2 ∑ i = 1 n ( x i − x ‾ ) ∼ χ 2 ( n − 1 ) \frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)\sim \chi^2(n)\\ \frac{s^2(n-1)}{\sigma^2}=\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\overline{x})\sim\chi^2(n-1) σ21i=1n(xiμ)χ2(n)σ2s2(n1)=σ21i=1n(xix)χ2(n1)

两个正态总体分布「均值差、方差比 」的区间估计

μ 1 − μ 2 \mu_1-\mu_2 μ1μ2

( x ‾ − y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n + σ 2 2 m ∼ N ( 0 , 1 ) \frac{(\overline{x}-\overline{y})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n}+\frac{\sigma_2^2}{m}}}\sim N(0,1) nσ12+mσ22 (xy)(μ1μ2)N(0,1)


( x ‾ − y ‾ ) − ( μ 1 − μ 2 ) s w 1 n + 1 m ∼ t ( n + m − 2 ) s w 2 = ( n − 1 ) s 1 2 + ( m − 1 ) s 2 2 n + m − 2 s w = s w 2 \frac{(\overline{x}-\overline{y})-(\mu_1-\mu_2)}{s_w\sqrt{\frac{1}{n}+\frac{1}{m}}}\sim t(n+m-2)\\ s_w^2=\frac{(n-1)s^2_1+(m-1)s_2^2}{n+m-2}\\ s_w=\sqrt{s_w^2} swn1+m1 (xy)(μ1μ2)t(n+m2)sw2=n+m2(n1)s12+(m1)s22sw=sw2

σ 1 2 / σ 2 2 \sigma_1^2/\sigma^2_2 σ12/σ22

s 1 2 / σ 1 2 s 2 2 / σ 2 2 ∼ F ( n − 1 , m − 1 ) \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}\sim F(n-1,m-1) s22/σ22s12/σ12F(n1,m1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值