参数估计_扩展卡尔曼滤波参数估计实例解析

本文通过车辆三自由度模型,利用扩展卡尔曼滤波估计横摆角速度、质心侧偏角、纵向速度。详细介绍了模型搭建、算法实现、仿真设置及结果分析,展示了算法的有效性。
摘要由CSDN通过智能技术生成

2589dcdf825301e9820aef062939fe8b.png

本文将以车辆三自由度模型为基础,利用扩展卡尔曼滤波,通过车辆的侧向加速度来估计横摆角速度、质心侧偏角、纵向速度等三个参数,通过一个实际的仿真案例来进行具体介绍扩展卡尔曼滤波的使用。

一般地,卡尔曼滤波会选择比较容易获取的参数,来估计不易测量的参数。

在这里,脚主把卡尔曼参数估计仿真分为四个步骤:

1)车辆模型搭建;

2)扩展卡尔曼滤波算法搭建;

3)模型整合及仿真工况设置;

4)仿真及结果分析。

01 车辆模型搭建

本例中,利用车辆三自由度模型(如下图)进行参数估计,需要知道车辆的输入信号(车轮转角、纵向加速度)和输出信号(侧向加速度),所以需要自己搭建一个车辆模型来创造这些数据。即对车辆模型输入一个方向盘转角和纵向加车速,得到侧向加速度。

ac5ef1b6a5b32236d7b1d012b6a476f6.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值