参考链接: torch.nn.Module.cpu()
原文及翻译:
cpu()
方法: cpu()
Moves all model parameters and buffers to the CPU.
将模型的所有参数和缓冲移动到CPU上.
Returns 函数返回
self 自身self
Return type 返回类型
Module Module模块类型
实验代码展示:
import torch
import torch.nn as nn
torch.manual_seed(seed=20200910)
class Model(torch.nn.Module):
def __init__(self):
super(Model,self).__init__()
self.conv1=torch.nn.Sequential( # 输入torch.Size([64, 1, 28, 28])
torch.nn.Conv2d(1,64,kernel_size=3,stride=1,padding=1),
torch.nn.ReLU(), # 输出torch.Size([64, 64, 28, 28])
torch.nn.Conv2d(64,128,kernel_size=3,stride=1,padding=1), # 输出torch.Size([64, 128, 28, 28])
torch.nn.ReLU(),
torch.nn.MaxPool2d(stride=2,kernel_size=2) # 输出torch.Size([64, 128, 14, 14])
)
self.dense=torch.nn.Sequential( # 输入torch.Size([64, 14*14*128])
torch.nn.Linear(14*14*128,1024), # 输出torch.Size([64, 1024])
torch.nn.ReLU(),
torch.nn.Dropout(p=0.5),
torch.nn.Linear(1024,10) # 输出torch.Size([64, 10])
)
self.layer4cxq1 = torch.nn.Conv2d(2,33,4,4)
self.layer4cxq2 = torch.nn.ReLU()
self.layer4cxq3 = torch.nn.MaxPool2d(stride=2,kernel_size=2)
self.layer4cxq4 = torch.nn.Linear(14*14*128,1024)
self.layer4cxq5 = torch.nn.Dropout(p=0.8)
self.attribute4cxq = nn.Parameter(torch.tensor(20200910.0))
self.attribute4lzq = nn.Parameter(torch.tensor([2.0,3.0,4.0,5.0]))
self.attribute4hh = nn.Parameter(torch.randn(3,4,5,6))
self.attribute4wyf = nn.Parameter(torch.randn(7,8,9,10))
def forward(self,x): # torch.Size([64, 1, 28, 28])
x = self.conv1(x) # 输出torch.Size([64, 128, 14, 14])
x = x.view(-1,14*14*128) # torch.Size([64, 14*14*128])
x = self.dense(x) # 输出torch.Size([64, 10])
return x
print('cuda(GPU)是否可用:',torch.cuda.is_available())
print('torch的版本:',torch.__version__)
model = Model() #.cuda()
print("测试模型(CPU)".center(100,"-"))
print(type(model))
print(model.attribute4lzq)
model.cuda()
print("测试模型(GPU)".center(100,"-"))
print(type(model))
print(model.attribute4lzq)
model.cpu()
print("测试模型(GPU)".center(100,"-"))
print(type(model))
print(model.attribute4lzq)
控制台输出结果展示:
Windows PowerShell
版权所有 (C) Microsoft Corporation。保留所有权利。
尝试新的跨平台 PowerShell https://aka.ms/pscore6
加载个人及系统配置文件用了 844 毫秒。
(base) PS C:\Users\chenxuqi\Desktop\News4cxq\test4cxq> conda activate ssd4pytorch1_2_0
(ssd4pytorch1_2_0) PS C:\Users\chenxuqi\Desktop\News4cxq\test4cxq> & 'D:\Anaconda3\envs\ssd4pytorch1_2_0\python.exe' 'c:\Users\chenxuqi\.vscode\extensions\ms-python.python-2020.12.424452561\pythonFiles\lib\python\debugpy\launcher' '56680' '--' 'c:\Users\chenxuqi\Desktop\News4cxq\test4cxq\test2.py'
cuda(GPU)是否可用: True
torch的版本: 1.2.0+cu92
---------------------------------------------测试模型(CPU)----------------------------------------------
<class '__main__.Model'>
Parameter containing:
tensor([2., 3., 4., 5.], requires_grad=True)
---------------------------------------------测试模型(GPU)----------------------------------------------
<class '__main__.Model'>
Parameter containing:
tensor([2., 3., 4., 5.], device='cuda:0', requires_grad=True)
---------------------------------------------测试模型(GPU)----------------------------------------------
<class '__main__.Model'>
Parameter containing:
tensor([2., 3., 4., 5.], requires_grad=True)
(ssd4pytorch1_2_0) PS C:\Users\chenxuqi\Desktop\News4cxq\test4cxq>