torch.nn.Module.cpu()

参考链接: torch.nn.Module.cpu()

在这里插入图片描述
原文及翻译:

cpu()  
方法: cpu()  
    Moves all model parameters and buffers to the CPU.
    将模型的所有参数和缓冲移动到CPU上.
    
    Returns  函数返回
        self  自身self
        
    Return type  返回类型
        Module  Module模块类型

实验代码展示:

import torch 
import torch.nn as nn
torch.manual_seed(seed=20200910)
class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.conv1=torch.nn.Sequential(  # 输入torch.Size([64, 1, 28, 28])
                torch.nn.Conv2d(1,64,kernel_size=3,stride=1,padding=1),
                torch.nn.ReLU(),  # 输出torch.Size([64, 64, 28, 28])
                torch.nn.Conv2d(64,128,kernel_size=3,stride=1,padding=1),  # 输出torch.Size([64, 128, 28, 28])
                torch.nn.ReLU(),
                torch.nn.MaxPool2d(stride=2,kernel_size=2)  # 输出torch.Size([64, 128, 14, 14])
        )

        self.dense=torch.nn.Sequential(  # 输入torch.Size([64, 14*14*128])
                    torch.nn.Linear(14*14*128,1024),  # 输出torch.Size([64, 1024])
                    torch.nn.ReLU(),
                    torch.nn.Dropout(p=0.5),
                    torch.nn.Linear(1024,10)  # 输出torch.Size([64, 10])        
        )
        self.layer4cxq1 = torch.nn.Conv2d(2,33,4,4)
        self.layer4cxq2 = torch.nn.ReLU()
        self.layer4cxq3 = torch.nn.MaxPool2d(stride=2,kernel_size=2)
        self.layer4cxq4 = torch.nn.Linear(14*14*128,1024)
        self.layer4cxq5 = torch.nn.Dropout(p=0.8)
        self.attribute4cxq = nn.Parameter(torch.tensor(20200910.0))
        self.attribute4lzq = nn.Parameter(torch.tensor([2.0,3.0,4.0,5.0]))    
        self.attribute4hh = nn.Parameter(torch.randn(3,4,5,6))
        self.attribute4wyf = nn.Parameter(torch.randn(7,8,9,10))

    def forward(self,x):  # torch.Size([64, 1, 28, 28])
        x = self.conv1(x)  # 输出torch.Size([64, 128, 14, 14])
        x = x.view(-1,14*14*128)  # torch.Size([64, 14*14*128])
        x = self.dense(x)  # 输出torch.Size([64, 10])
        return x

print('cuda(GPU)是否可用:',torch.cuda.is_available())
print('torch的版本:',torch.__version__)

model = Model() #.cuda()

print("测试模型(CPU)".center(100,"-"))
print(type(model))
print(model.attribute4lzq)


model.cuda()
print("测试模型(GPU)".center(100,"-"))
print(type(model))
print(model.attribute4lzq)


model.cpu()
print("测试模型(GPU)".center(100,"-"))
print(type(model))
print(model.attribute4lzq)

控制台输出结果展示:

Windows PowerShell
版权所有 (C) Microsoft Corporation。保留所有权利。

尝试新的跨平台 PowerShell https://aka.ms/pscore6

加载个人及系统配置文件用了 844 毫秒。
(base) PS C:\Users\chenxuqi\Desktop\News4cxq\test4cxq> conda activate ssd4pytorch1_2_0
(ssd4pytorch1_2_0) PS C:\Users\chenxuqi\Desktop\News4cxq\test4cxq>  & 'D:\Anaconda3\envs\ssd4pytorch1_2_0\python.exe' 'c:\Users\chenxuqi\.vscode\extensions\ms-python.python-2020.12.424452561\pythonFiles\lib\python\debugpy\launcher' '56680' '--' 'c:\Users\chenxuqi\Desktop\News4cxq\test4cxq\test2.py'
cuda(GPU)是否可用: True
torch的版本: 1.2.0+cu92
---------------------------------------------测试模型(CPU)----------------------------------------------
<class '__main__.Model'>
Parameter containing:
tensor([2., 3., 4., 5.], requires_grad=True)
---------------------------------------------测试模型(GPU)----------------------------------------------
<class '__main__.Model'>
Parameter containing:
tensor([2., 3., 4., 5.], device='cuda:0', requires_grad=True)
---------------------------------------------测试模型(GPU)----------------------------------------------
<class '__main__.Model'>
Parameter containing:
tensor([2., 3., 4., 5.], requires_grad=True)
(ssd4pytorch1_2_0) PS C:\Users\chenxuqi\Desktop\News4cxq\test4cxq>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值