# 法一: 本题采用函数缓存的方式实现动态规划
# 动态规划求解两个字符串str1和str2的最长公共子串的长度
# dp[i][j] 表示分别从str1和str2中取长度i和j,求该子问题的解
# 如果i*j==0, 即i==0或j==0, dp[i][j]=0
# 如果 str1[i-1] == str2[j-1], dp[i][j] = 1 + dp[i-1][j-1]
# 如果 str1[i-1] != str2[j-1],则:
# dp[i][j] = max([dp[i-1][j],dp[i][j-1]])
import functools
str1, str2 = '',''
@functools.lru_cache(maxsize=None)
def dp(len1, len2):
if len1 * len2 == 0:
return 0
if str1[len1-1] == str2[len2-1]:
return dp(len1-1, len2-1) + 1
else:
return max([
dp(len1, len2-1),
dp(len1-1, len2)
])
if __name__ == '__main__':
try:
while True:
dp.cache_clear() # 清除函数的缓存
str1 = input().strip()
str2 = input().strip()
len1, len2 = len(str1), len(str2)
length = dp(len1, len2)
print(length)
except:
pass
# 法二: 本题采用列表,以二维数组的方式实现动态规划
# 动态规划求解两个字符串str1和str2的最长公共子串的长度
# dp[i][j] 表示分别从str1和str2中取长度i和j,求该子问题的解
# 如果i*j==0, 即i==0或j==0, dp[i][j]=0
# 如果 str1[i-1] == str2[j-1], dp[i][j] = 1 + dp[i-1][j-1]
# 如果 str1[i-1] != str2[j-1],则:
# dp[i][j] = max([dp[i-1][j],dp[i][j-1]])
if __name__ == '__main__':
try:
while True:
str1 = input().strip()
str2 = input().strip()
len1, len2 = len(str1), len(str2)
dp = [[0 for j in range(len2+1)]for i in range(len1+1)]
for i in range(1, len1+1):
for j in range(1, len2+1):
if str1[i-1] == str2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max([
dp[i-1][j],dp[i][j-1]
])
print(dp[len1][len2])
except EOFError:
pass