基于最短路的差分约束模型

1. 差分约束的功能

  1. 不等式组的可行解
  2. 满足不等式组的每一个变量的最值

不等式组中每一个不等式形式如下:
x i ≤ x j + c k x_i ≤x_j+c_k xixj+ck
其中, x i x_i xi x j x_j xj 是自变量, c k c_k ck 是应变量。

我们可以类比一下之前的最短路问题,假设存在一条从 j j j 走到 i i i,边权为 c c c 的边。在进行最短路计算时,只要遇到 d i s t [ j ] > d i s t [ i ] + c dist[j] > dist[i] +c dist[j]>dist[i]+c,我们就将 d i s t [ j ] dist[j] dist[j] 更新为 d i s t [ i ] + c dist[i] + c dist[i]+c。因此,当做完最短路之后,对于所有的 j j j,都有 d i s t [ j ] ≤ d i s t [ i ] + c dist[j] ≤ dist[i] + c dist[j]dist[i]+c

如果给我们一个图,我们可以把每条边看成一个不等式,那么我们在这个图上求一遍起点到所有点的最短距离(注意从起点出发,一定能走到所有的边),求完之后每个边的不等式都是满足的。那么,任何一个最短路问题,都可以转换为一个不等式组。那么反过来也一样,一个不等式组也可以转换为一个最短路问题

因此,我们在解不等式组问题的时候,遇到一个不等关系,就将它处理成为 x i ≤ x j + c k x_i ≤ x_j + c_k xixj+ck 的格式,然后建立 j → i j→i ji 权值为 c k c_k ck 的一条边。之后我们在这个图上,随便选择起点(该起点需要满足从该点出发,一定可以走遍所有的边),求一下每个点到起点的最短距离,求完之后,所有的不等关系都会满足。

2. 求不等式的可行解

综上所述,我们可以总结出差分约束求不等式可行解的做法:

源点需要满足的条件:从源点出发,一定可以走到所有边(某个点走不到没有关系,因为从数学的角度,某个点就是某一个变量,既然没有边与它相连,它就没有任何约束)。

步骤
【1】先将每个不等式 x i ≤ x j + c x_i ≤ x_j + c xixj+c 转换成一条 j → i j→i ji 长度为 c c c 的一条边
【2】找一个虚拟源点,使得该源点一定可以遍历到所有边
【3】从虚拟源点求一遍 单源最短路

注意
并不是所有图都存在最短路,图中可能存在负环,如果存在负环对应到不等式中就是无解

因此,建图完毕以后,做一次最短路,只有两个结果
(1)如果存在负环,那么该不等式组一定无解
(2)如果不存在负环,则 d i s t [ i ] dist[i] dist[i] 就是原不等式组中 x i x_i xi 的一个可行解

3. 求满足不等式组中每一个变量的最值

只记结论: 如果求的是最小值,则应该求最长路;如果求的是最大值,则应该求最短路。为什么呢?以求 x i x_i xi 的最大值为例:求所有从 x i x_i xi 出发,构成不等式链 x i ≤ x j + c 1 ≤ x k + c 2 + c 1 ≤ . . . ≤ . . . ≤ c 1 + c 2 + . . . + c k x_i≤x_j+c_1≤x_k+c_2+c_1≤...≤...≤c1+c2+...+c_k xixj+c1xk+c2+c1......c1+c2+...+ck,通过做最短路以后可以确定 x i x_i xi 的一系列上界,最终 x i x_i xi 的最大值就等于所有上界中的最小值。

最长路的建图方式和2节中最短路的建图方式一样,把不等式转换成 x i ≥ x j + c x_i ≥ x_j + c xixj+c, 建立一条 j → i j→i ji 长度为 c c c 的一条边(最短路只看≤,最长路只看≥)。

我们知道,如果不等式组中仅仅包含不同变量之间的大小关系,那么我们求出的可行解一定是一个包含变量的相对关系,它不存在一个极值的概念。

因此,一旦题目让我们求满足不等式关系的极值,那么一定会在不等式组中加入形如 x i ≤ c x_i ≤ c xic x i ≥ c x_i ≥ c xic 这样的条件(小于还是大于看求最短路还是最长路),这样才能确定最后不等式组的边界,得到极值。那么,如何处理形如这种单变量常数关系呢?

【问题】如何转化形如 x i ≤ c x_i ≤ c xic,其中 c c c 是一个常数的这类关系?
答:建立一个虚拟源点 0 0 0,转换为 x i ≤ x 0 + c x_i≤x_0+c xix0+c,然后建立 0 → i 0→i 0i,长度是 c c c 的边。

4. 经典例题

4.1 题目描述

幼儿园里有 N N N 个小朋友,老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。

但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候, 老师需要满足小朋友们的 K K K 个要求。

幼儿园的糖果总是有限的,老师想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。

输入格式
输入的第一行是两个整数 N , K N,K N,K

接下来 K K K 行,表示分配糖果时需要满足的关系,每行 3 3 3 个数字 X , A , B X,A,B X,A,B

如果 X = 1 X=1 X=1.表示第 A A A 个小朋友分到的糖果必须和第 B B B 个小朋友分到的糖果一样多。
如果 X = 2 X=2 X=2,表示第 A A A 个小朋友分到的糖果必须少于第 B B B 个小朋友分到的糖果。
如果 X = 3 X=3 X=3,表示第 A A A 个小朋友分到的糖果必须不少于第 B B B 个小朋友分到的糖果。
如果 X = 4 X=4 X=4,表示第 A A A 个小朋友分到的糖果必须多于第 B B B 个小朋友分到的糖果。
如果 X = 5 X=5 X=5,表示第 A A A 个小朋友分到的糖果必须不多于第 B B B 个小朋友分到的糖果。
小朋友编号从 1 1 1 N N N

输出格式
输出一行,表示老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出 − 1 −1 1

数据范围
1 ≤ N < 1 0 5 , 1≤N<10^5, 1N<105,
1 ≤ K ≤ 1 0 5 , 1≤K≤10^5, 1K105,
1 ≤ X ≤ 5 , 1≤X≤5, 1X5,
1 ≤ A , B ≤ N 1≤A,B≤N 1A,BN

输入样例:

5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1

输出样例:

11

4.2 代码模板

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;
// 注意:这里M取3倍的原因是:
// 最坏条件下每一个边都是=,要加2条边,最坏2e5,然后虚拟源点的边要加一遍1e5
const int N = 1e5 + 10, M = 3e5 + 10;
int h[N], e[M], ne[M], w[M], idx;
int dist[N], cnt[N];
int stk[N], tt;
bool st[N];
int n, m;

void add(int a, int b, int c)
{
    w[idx] = c, e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

// 求最小值,则用spfa求最长路,遇到正环就退出
bool spfa()
{
	// 最长路初始化为负无穷,初值与最短路一致,都赋为0
    memset(dist, -0x3f, sizeof dist);
    dist[0] = 0;
    
    stk[ ++ tt] = 0;
    st[0] = true;
    
    while (tt)
    {
        int t = stk[tt -- ];
        st[t] = false;
        
        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            // 注意这里求的是最长路,用的是小于号
            if (dist[j] < dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n + 1) return false;
                if (!st[j])
                {
                    st[j] = true;
                    stk[ ++ tt] = j;
                }
            }
        }
    }
    return true;
}

int main()
{
    scanf("%d%d", &n, &m);
    
    memset(h, -1, sizeof h);
    
    while (m -- )
    {
        int t, a, b;
        scanf("%d%d%d", &t, &a, &b);
        
        if (t == 1) add(b, a, 0), add(a, b, 0);
        else if (t == 2) add(a, b, 1);
        else if (t == 3) add(b, a, 0);
        else if (t == 4) add(b, a, 1);
        else add(a, b, 0);
    }
    
    // 因为这里虚拟源点可以到每个点,那么到了每个点一定能走到每条边,反之不成立。说明0这个虚拟源点合法
    // 别忘了加上对常数的限制,即从虚拟源点到每个点的边
    for (int i = 1; i <= n; i ++ ) add(0, i, 1);
    
    // 最后的答案可能会很大,因此用ll存
    ll res = 0;
    
    if (spfa())
    {
        for (int i = 1; i <= n; i ++ )
            res += dist[i];
        printf("%lld\n", res);
    }
    else puts("-1");
    
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁头娃撞碎南墙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值