数据分析中相关性分析相关的概念

期望:是描述一组数据的中心倾向的一个指标之一。(均值,求平均数)

方差:是描述一组数据的离散程度的指标,标准差即方差的开方。

协方差:
	是用来衡量两个变量的总体误差,如果两个变量的变化趋势一致,协方差就是正值,说明两个变量正相关。
	如果两个变量的变化趋势相反,协方差就是负值,说明两个变量负相关。
	如果两个变量相互独立,那么协方差就是0,说明两个变量不相关。

相关系数:一般可以使用相关系数来衡量两组数据的相关性,相关系数的取值范围为[-1,1]-1表示完全负相关,+1表示完全正相关。

相关性系数:
	1)pearson 线性相关关系(符合正态分布的数据)
	2)Spearman 秩相关字数(有序连续变量)
	3)Kendall 等级相关系数(有序分类变量)
	4)Sparcc 成分相关系数


皮尔逊系数/斯皮尔曼系数:衡量2个变量之间的线性相关性。
	.00-.19 “very weak”
	.20-.39 “weak”
	.40-.59 “moderate”
	.60-.79 “strong”
	.80-1.0 “very strong”
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页