简单的CNN实现——MNIST手写数字识别

0.概述

此文章不涉及复杂的理论知识,仅仅只是利用PyTorch组建一个简单的CNN去实现MNIST的手写数字识别,用好的效果去激发学习CNN的好奇心,并且以后以此为基础,去进行一些改造。(前提是把基础代码看明白)
本文CNN网络结构:
在这里插入图片描述
以下为最基本的代码(不需要GPU):

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# Super parameter
batch_size = 64
lr = 0.01
momentum = 0.5
epoch = 10
# Prepare dataset
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Design model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = nn.MaxPool2d(2)
        self.fc = nn.Linear(320, 10)
    def forward(self, x):
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(x.size(0), -1)  # flatten (batch, 20,4,4) ==> (batch,320)
        x = self.fc(x)
        return x
model = Net()
# Construct loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
# Train and Test
def train():
    for (images, target) in train_loader:
        outputs = model(images)
        loss = criterion(outputs, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
def test():
    correct, total = 0, 0
    with torch.no_grad():
        for (images, target) in test_loader:
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
    print('[%d / %d]: %.1f %% ' % (i + 1, epoch, 100 * correct / total))
# Start train and Test
print('Accuracy on test set:')
for i in range(epoch):
    train()
    test()

输出结果:

Accuracy on test set:
[1 / 10]: 96.7 % 
[2 / 10]: 97.7 % 
[3 / 10]: 98.1 % 
[4 / 10]: 98.4 % 
[5 / 10]: 98.2 % 
[6 / 10]: 98.8 % 
[7 / 10]: 98.6 % 
[8 / 10]: 98.7 % 
[9 / 10]: 98.7 % 
[10 / 10]: 98.9 % 

1.MNIST数据集介绍

1.数据量

MNIST数据集共有70000张图像,其中训练集60000张,测试集10000张。所有图像都是28×28的单通道灰度图像,每张图像包含一个手写数字。

2.标注类别

共10个类别,每个类别代表0~9之间的一个数字,每张图像只有一个类别。

3.可视化
from matplotlib import pyplot as plt
from torchvision import datasets, transforms
# Prepare dataset
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
# View picture
fig = plt.figure()
for i in range(12):
    plt.subplot(3, 4, i + 1)
    plt.tight_layout()
    plt.imshow(train_dataset.data[i], cmap='gray', interpolation='none')
    plt.title("Label: {}".format(train_dataset.targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()

在这里插入图片描述

4.张量化

二进制压缩文件–>train_dataset->train_loader

# Prepare dataset
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform,download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
1.train_dataset中的数据组织
from torchvision import datasets, transforms
# Prepare dataset
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
# Explore train_dataset
x = train_dataset
print(type(x))  # <class 'torchvision.datasets.mnist.MNIST'>
print(len(x))  # 60000
print(x)

print(type(x[0]))  # <class 'tuple'>
print(x[0])
print(len(x[0]))  # 2

print(type(x[0][0]))  # <class 'torch.Tensor'>
print(type(x[0][1]))  # <class 'int'>

print(x[0][0].shape)  # torch.Size([1, 28, 28])  图片
print(x[0][1])  # 5  类别标签

结论:train_dataset是一个含有60000个数据点的Dataset类,每个数据点(如x[0])是一个长度为2的元组,索引0表示图片张量,索引1表示图片的类别标签(0~9)

2.train_loader中的数据组织

同理可得结论: train_loader是一个生成器,我们设置了batch_size是64,所以dataloader会把60000个样本,64个样本一组,按照组的顺序一组一组传给我们,总共938组,每组64张图片和对应标签。每一组的类型是长度为2的list列表,索引0表示一个6412828的张量,即把64个图片张量拼在一起,索引1表示一个641的张量,即把64个标签拼在一起。

2.模型设计

图片张量维度的两个变化点:
1.通道数C:卷积层会改变它,1->10->20
2.尺寸W*H:卷积层会小幅改变它,池化层会大幅改变它,28->24->12->8->4

构造模型的两个关注点:
1.卷积层关注前后的通道数变化
2.全连接层关注连接前一张图片的全通道像素数320和连接后的分类标签数10
在这里插入图片描述
在连接到全连接层之前,将一张图片的所有通道全部展开和连接构成一个一维数组,即20*4*4展开为320个元素组成的数组,经过全连接层将其按权重加和为10个类别标签。

按照模型图代码设计如下:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = nn.MaxPool2d(2)
        self.fc = nn.Linear(320, 10)
    def forward(self, x):
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(x.size(0), -1)  # flatten (batch, 20,4,4) ==> (batch,320)
        x = self.fc(x)
        return x
model = Net()
1.torch.nn.Module

Module类是所有神经网络模块的基类,Module可以以树形结构包含其他的Module。Module类中包含网络各层的定义及forward方法,下面介绍我们如何定义自已的网络:

  1. 需要继承nn.Module类,并实现forward方法;
  2. 一般把网络中具有可学习参数的层放在构造函数__init__()中;
  3. 不具有可学习参数的层(如ReLU)可在forward中使用nn.functional来代替;
  4. 只要在nn.Module的子类中定义了forward函数,利用Autograd自动实现反向求导。
2.super(Net, self).init()

子类Net类继承父类nn.Module,super(Net, self).init()就是对继承自父类nn.Module的属性进行初始化。并且是用nn.Module的初始化方法来初始化继承的属性。也就是:用父类的方法初始化子类的属性。
为什么要用父类的方法去初始化属性呢?原因很简单:因为父类的方法已经写好了,我们只需要调用就可以了。不需要自己写一堆代码去初始化各种权重和参数和处理一堆forward和backward的逻辑。
python中__init()的作用:在python中创建类后,通常会创建一个 init ()方法,这个方法会在创建类的实例的时候自动执行。

3.torch.nn.Conv2d(1, 10, kernel_size=5)

函数原型:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

参数说明:
在这里插入图片描述

4.torch.nn.Linear(320, 10)

函数原型:torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
在这里插入图片描述

5.x = x.view(x.size(0), -1)

作用是将前面多维度的tensor展平成一维。一般出现在model类的forward函数中,具体位置一般都是在调用分类器之前。分类器是一个简单的nn.Linear()结构,输入输出都是维度为1的值。
x.size()为(batch_size,channels,H,W),则x.size(0)=batch_size。
view()函数的功能和reshape类似,用来转换size大小。x = x.view(batchsize, -1)中batchsize指转换后有几行,而-1指在不告诉函数有多少列的情况下,根据原tensor数据和batchsize自动分配列数。

3.训练与测试

1.训练
def train():
    for (images, target) in train_loader:
        outputs = model(images)
        loss = criterion(outputs, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

1.获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数。
2.optimizer.zero_grad() 清空过往梯度。
3.loss.backward() 反向传播,计算当前梯度。
4.optimizer.step() 根据梯度更新网络参数。

2.测试
def test():
    correct, total = 0, 0
    with torch.no_grad():
        for (images,target) in test_loader:
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
    print('[%d / %d]: %.1f %% ' % (i+ 1, epoch, 100 * correct / total))

如何理解_, predicted = torch.max(outputs.data, dim=1)
torch.max()这个函数返回的是两个值,第一个值是具体的value(我们用下划线_表示),第二个值是value所在的index(也就是predicted)。
在图像分类任务中,值所对应的index就对应着相应的类别class,当我们只关心网络预测的类别是什么,而不关心该类别的预测概率是多少时,就选择使用下划线_。
dim=1表示输出所在行的最大值,若改写成dim=0则输出所在列的最大值。

  • 8
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值