YOLOV5改进-Optimal Transport Assignment

本文介绍了如何在YOLOV5中引入OptimalTransportAssignment来优化损失函数,通过修改YOLOV5的loss.py和train.py、val.py文件,替换计算损失的方法并进行训练,从而提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOV5改进-Optimal Transport Assignment
使用Optimal Transport Assignment优化Loss

项目代码:https://github.com/z1069614715/objectdetection_script

(博主:魔鬼面具

Optimal Transport Assignment简介

1、首先找到该loss.py 

2、在官网下载yolov5的源代码  ,用pycham打开 

ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite (github.com)

 

3、复制步骤1中loss.py中的内容,并将它粘贴到步骤2中/YOLOV5-MASTER/utils/loss.py内容最后面,结果如下图所示,从237行开始。

 4、打开train.py

!将from utils.loss import Compute 修改为from utils.loss import ComputeOTA

!将compute_loss = ComputeLoss(model)修改为compute_loss = ComputeLossOTA(model)

!前向推理部分要额外增加一个参数imgs

 

 5、打开val.py,在# loss 中增加一个参数 im

 

之后就可以进行训练了!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值