YOLOV5改进-Optimal Transport Assignment
使用Optimal Transport Assignment优化Loss
项目代码:https://github.com/z1069614715/objectdetection_script
(博主:魔鬼面具)
Optimal Transport Assignment简介
1、首先找到该loss.py
2、在官网下载yolov5的源代码 ,用pycham打开
(ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite (github.com))
3、复制步骤1中loss.py中的内容,并将它粘贴到步骤2中/YOLOV5-MASTER/utils/loss.py内容最后面,结果如下图所示,从237行开始。
4、打开train.py
!将from utils.loss import Compute 修改为from utils.loss import ComputeOTA
!将compute_loss = ComputeLoss(model)修改为compute_loss = ComputeLossOTA(model)
!前向推理部分要额外增加一个参数imgs
5、打开val.py,在# loss 中增加一个参数 im
之后就可以进行训练了!