深度学习在识别雷达信号调制类别中的应用

本文探讨了深度学习在雷达信号识别中的应用,包括基于1D-CNN的雷达干扰信号分类和S-CNN模型,以及结合CNN、LSTM和DNN的CLDNN网络。1D-CNN利用卷积、池化和非线性提取特征,解决样本不足问题。S-CNN通过测量输入间的相似性进行分类,适用于有限样本。CLDNN网络在不同信噪比下表现出色,特别是在自相关域中,对于低SNR信号的识别效果良好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关博文:基于深度学习的雷达辐射源识别技术研究
基于扩张残差网络的雷达辐射源信号识别

1 Convolutional Neural Network-Based RadarJamming Signal Classification With Sufficientand Limited Samples

(基于卷积神经网络的有限样本雷达干扰信号分类)
2020.4.27发表
主要贡献:

  1. 1D-CNN的雷达干扰信号分类模型;
  2. 解决样本不足的问题:改进的Siamese-CNN(S-CNN)雷达干扰信号;
  3. 12种雷达干扰信号的实验。

1D-CNN的雷达干扰信号分类模型

CNN包括卷积、池化和非线性三个部分。
如下图设计两个1D-CNN以提取雷达干扰数据的实部和虚部特征 。通过卷积和合并,提取出雷达干扰数据实部和虚部的深层特征。最后将上述功能进行串联,然后将它们发送到softmax分类器,以获得干扰类别信息。
在这里插入图片描述
网络优化部分:

  1. Dropout:使模型更具有通用性
  2. GAP(globe average pooling):替换CNN中传统的连接层;
  3. BN:在训练过程中保持神经网络各层输入的相同分布,加速网络的收敛。

1D-CNN网络在这里插入图片描述
结果分析:

评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值