关于解决CUDA out of memory的显存问题

GPU编程在本地测试运行python时,遇到显存不足的问题,具体报错如下图:

CUDA out of memory. Tried to allocate 1.36 GiB (GPU 0; 31.74 GiB total capacity; 
538.78 MiB already allocated; 993.38 MiB free; 548.00 MiB reserved in total by PyTorch)
If reserved memory is >> allocated memory try setting max_split_size_mb to avoid
fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

在这里插入图片描述
出现的是 torch.cuda.OutOfMemoryError 错误,这意味着当前 GPU 显存不足,无法分配更多的内存来执行操作。

以下是可能的解决方案:

1. 减少批量大小(Batch Size)

减少模型中使用的批量大小可以显著减少 GPU 内存的占用。你可以调整批量大小的参数。

batch_size = 16  # 或更小

# 或者从输入数据读取size
batchsize = x.size(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值