Problem Solving and Rule Induction:A Unified View论文翻译及阅读

Problem Solving and Rule Induction:A Unified View论文翻译及阅读

作者:Herbert A. Simon and Glenn Lea Carnegie-Mellon University
出版时间:1974
论文链接:论文
翻译时间:2021.10.6

论文时间过于久远,文章图片无法显示,可自行搜索
摘要和附录不再显示,可查看原文链接
翻译内容如有出入,还请谅解

关于认知过程的心理学文献中的讨论通常将一类称为“解决问题”的行为一类有时称为“概念获得,有时称为模式归纳”,有时称为“规则发现”的行为分开处理。 其他。我们将使用短语“规则归纳”来指代第二类中的任何不同任务。我们在 1938 年版的伍德沃斯实验心理学中已经找到了这种划分,其中倒数第二章专门讨论解决问题的行为, 最后一章主要是规则归纳。在解释这个组织时,伍德沃斯评论 (1938, p. 746):

两章对于思考的大话题来说不会太多,我们可以根据两个实验流的历史来源进行划分,它们确实合并到了最近的工作中。 一股源于对动物行为的研究,并继续解决人类问题; 另一个开始于人类更多的语言思维。*

远未合并,这两个流在最近的作品中仍然被视为截然不同。 例如,在他 1968 年关于人工智能研究及其与心理学相关性的年度评论调查中,厄尔亨特将单独的部分用于“演绎问题解决”和“归纳问题解决”,他的类别与上面介绍的类别密切对应。 类似的类别出现在主要的当代教科书中。

这种二分法不能说是令人满意的,因为它将思维理论分裂成子理论,并且它们之间没有明显的联系。 在提出用于解决问题的信息过程时,理论家对这些过程与概念获得或其他规则归纳任务的相关性不承担任何责任,反之亦然。 这两种思维活动当然有可能是完全分开独立的,但可能性不是似是而非。 如果我们能展示它们之间的关系会更好; 或者,如果它们不相关,我们是否可以提供一个通用框架,可以在其中查看两类活动。

Hunt (1968) 对“演绎”和“归纳”的二分法是行不通的,因为很容易表明,从逻辑的观点来看,解决问题所涉及的过程是归纳的,而不是演绎的。 Hunt 可能被用于解决问题的最早人工智能系统(例如,逻辑理论家)处理定理证明的任务环境这一事实误导了。 可以肯定的是,形式数学或逻辑系统中定理的证明是一个演绎对象; 也就是说,该定理与其前提存在演绎关系。但是解决问题的任务是发现这个推论,这个证明; 而发现过程,也就是解决问题的过程,本质上是完全归纳的。 它是在大量逻辑表达式空间中搜索目标表达式——定理。 因此,问题解决理论和规则归纳理论都必须解释归纳过程——相信这些理论应该有一些共同点的进一步理由。

**问题解决理论的最新发展 **(Newell, 1968; Newell 6c Simon, 1972; Simon, 1972) 为我们提供了关于如何构建一个包含问题解决和规则归纳的共同理论体系的线索,包括概念的实现。本文的目的是概述这样一个理论。 我们不会引用新的经验证据,甚至不会参考文献中的特定实验。 相反,我们将把上述问题解决理论的最新表述(Newell & Simon, 1972),以及最近制定的概念实现的相当一般的过程模型(Gregg 6c Simon, 1967)作为我们的起点,以及展示这两者如何与作为我们目标的更一般框架相关。 由于这些理论有大量的经验基础,因此讨论将与经验数据紧密相连,尽管是间接的。

初步说明

在继续之前,我们需要更清楚地说明我们的意思。 “共同的理论体系。” 对面临解决问题的任务或概念获得任务的主体行为的理论解释可能采取程序的形式,信息过程的组织,或多或少适合执行任务。 这实际上就是上一段提到的纽厄尔和西蒙的问题解决理论以及格雷格和西蒙的概念达成理论的形式。 就这两种任务环境中解释行为的两个程序采用相同的基本过程而言,或者就这些过程以同构方式组织的程度而言,我们可以说它们表达了一个共同的理论。

但我们必须更具体地了解它们的共同点。 事实上,两个物理理论都可以用微分方程来表述,这只是表面上的联系。 更不用说我们会惊讶或印象深刻地发现两种人类信息处理性能理论可以用同一种编程语言编写。 计算机语言——lPL-V、LISP、SNOBOL 几乎是完全通用的,能够描述任何组织信息处理。 图灵机可以完成的任何事情都可以用这些语言中的任何一种来描述。 当我们谈到解决问题和规则归纳的通用理论时,我们打算断言不仅仅是人是图灵机。

它也不足以——或者信息量很大——表明可以编写一个程序来模拟和描述人类在解决问题和获得概念的环境中的行为。 这种通用性可以通过一个“大开关”来实现——一对子程序只通过一个简单的测试来识别任务环境,并从这对子程序中选择合适的子程序来处理它。

因此,我们寻求的普遍性不是图灵机或大开关这样几乎空洞的普遍性。 我们的目标是展示问题解决过程和规则诱导过程之间的关系,而不是其中任何一个所暗示的。随着我们继续,这意味着什么将变得清晰。

因为“问题解决”和“规则归纳”本身就是边界不明确的异构领域,我们将通过参考一些具体的说明性任务领域来使事情更加具体。 为了解决问题,我们将特别关注 Newell & Simon (1972) 详细分析的两个任务:密码学和发现逻辑定理的证明。 对于规则归纳,我们将使用标准概念实现范式(Bruner,Goodnow 6c Austin,1956;Hunt,1962;Gregg 6c Simon,1967)、序列模式的外推(Feldman、Tonge 和 Kanter,1963;Simon 6c Kotovsky, 1963;Simon,1972),以及语法规则的归纳(Solomonoff,1959;Klein & Kuppin,1970;Siklossy,1972)。

我们的事业比迄今为止所表明的要更加雄心勃勃。 因为,不仅形成了不同的理论体系来分别处理问题解决和规则归纳,而且整个先前模式序列概念的理论处理和标准实验理论的理论化方面相对缺乏统一后一个领域的范式。 特别是,达到前不包括外推序列外推不包括学习概念的获得。 在这里,我们的目标是统一处理我们在这里称为“规则归纳”的所有事物,然后将这些与称为“问题解决”的活动进行比较。

我们将从概述问题解决的信息处理理论的基本特征开始,然后利用这些特征来构建更广泛的理论。

问题求解

在解决一个结构良好的问题时(这是我们唯一要处理的问题),问题解决者在问题空间内运行。问题空间是一组点或节点,每个点或节点代表一个知识状态知识状态是问题解决者在寻找解决方案的特定阶段所知道或假设的一组事物。 例如,在他试图解决密码问题的某个时刻,DONALD+GERALD= ROBERT,问题解决者可能知道数字 5 必须分配给字母 D,数字 0 分配给 T,数字 9 分配给 E ; 并且他可能也知道 R 是奇数且大于 5。这些知识位的合取定义了他当前在其问题空间中所处的特定节点,并且该空间由这些节点的集合组成,每个节点代表一些这类知识集。

picture1

问题解决活动可以描述为在知识状态的空间(或迷宫或网络)中搜索,直到达到提供问题解决方案的状态。 一般而言,到达的每个节点包含的知识比先前已到达的知识多一点,连接节点的链接是某种搜索和推理过程,可将新知识添加到先前的存储中

因此,在密码算术问题中,解的状态是每个字母都被分配了一个数字,并且已经验证这些分配提供了编码加法问题的正确翻译。==问题解决者通过推理(或猜想)和对问题显示的视觉搜索从一种状态移动到另一种状态。 ==例如,知道 E=9 并且 Ri 是奇数且大于 5,他可以推断出 R=7 。 或者知道 E=9,他可能会通过扫描发现 ROBERT 中的 E,并将其替换为 9,从而获得:A+A=9(进位除外)右侧第三列。

类似地,在发现定理的证明时,像通用问题求解器 (GPS) 这样组织起来的问题求解器从一些初始表达式(前提)和目标表达式(要证明的定理)开始,然后应用推理规则来生成新的可从前提导出的表达式,直到生成与所需定理相同的表达式。 在这种情况下,组成问题空间的知识状态是沿着特定推理路径导出的表达式集。

picture2

由在每个连续的知识状态可用的信息引导,通过这样一个问题空间的搜索通常是高度选择性的。 鉴于问题解决者已经访问了问题空间中的一定数量的点,他可以通过两种决策来确定他将继续搜索的方向:(1)从已经访问过的点中选择一个特定的 继续搜索的知识状态; (2)选择一个特定的算子(推理规则,或“移动”)在那个节点上应用,以达到一个新的知识状态。

方法-目的分析,似乎在许多问题环境中被人类受试者广泛使用,是一种用于选择运算符的特殊方案。 它是包含在 GPS 中的密钥选择机制。对于方法-目的分析,在特定知识状态下的信息具有已经达到的与解决方案的规范进行比较,以发现它们之间的一个或多个差异。 对应于这些差异之一,选择根据先前经验已知的运算符,通常以消除那种差异。 应用算子以达到新的知识状态。

picture3

我们可以将这种问题解决的描述形式化和概括如下:

  1. 存在一个问题空间,其元素是知识状态。
  2. 有一个或多个生成过程(算子)将知识状态作为输入并产生新的知识状态作为输出。
  3. 有一个或多个测试过程用于将知识状态与问题状态的规范进行比较,以及用于比较知识状态对并产生它们之间的差异。
  4. 存在用于根据知识状态中包含的信息选择使用这些生成器和测试中的哪一个的过程。

这个表征的关键点是第三和第四个假设:包含在知识状态中的信息可以用来指导新知识状态的生成,这样在问题空间中的搜索可以是选择性的而不是随机的。 问题解决过程既是一个搜索过程,也是一个信息收集过程因为正是在搜索过程中信息的积累使得搜索具有选择性,并为在非常大的问题空间中解决问题提供了机会成功。 使用此信息来引导搜索的过程通常是归纳推理过程。 作为归纳,它们不提供确定性,而仅在指导搜索和使其高效方面具有启发式价值。

将问题解决表征为信息收集为我们提供了处理我们感兴趣的整个任务范围所需的框架我们将所有这些任务的过程描述为在搜索过程中积累的信息指导下通过问题空间进行搜索。 并且我们将证明基本的搜索过程(生成、测试和选择过程)以及推理过程在规则归纳任务中与在问题解决任务中属于同一类型,并且被组织成一个非常相似的方式。 最后,我们将看到这两个领域之间的基本区别在于,规则归纳涉及两个不同但相互关联的问题空间之间的活动交替,而只有一个空间涉及问题解决。

定理证明中的信息收集

考虑以下类似 GPS 的系统,用于发现符号逻辑中定理的证明。 已观察到实验室中的许多受试者基本上遵循此过程。 知识状态是从初始前提导出的逻辑表达式集两种信息用于指导搜索给定知识状态中包含的表达式与目标表达式的相似或差异程度,以及知识状态中特定表达式与目标表达式之间差异的具体特征。 第一种信息衡量在达到知识状态方面取得的进展——如果它包含一个与目标表达式高度相似的表达式,那么它可以作为进一步搜索的可能起点。 第二种信息表明如何获得更接近目标表达式的近似值——检测到的特定差异建议特定操作员将其删除(参见图 3)。

密码学中的信息收集

我们将使用密码算术任务作为从问题解决主题到规则归纳主题的“桥梁”,因为可以对将其置于两个类别中的任何一个的任务进行解释。 虽然解决密码问题的信息收集过程可以用与我们在定理证明中对信息收集的描述非常相似的方式来描述,但我们将以稍微不同的方式看待问题。 让我们考虑密码学中的知识状态由两个可区分的部分组成:问题显示,其中数字替换了那些已经赋值的字母; 和作业清单本身 解决问题的目标可以用两种方式描述:(1)替换所有以数字显示的字母,以确保算术中的结果是正确的; 或 (2) 完成数字到字母的分配列表,以便每个字母都有一个不同的数字分配给它。 当然,必须同时满足这两个条件才能解决问题,但是如果在修改显示和向列表中添加新任务时进行了适当的一致性检查,则达到任一目标将保证实现另一个目标。

picture4

在解决问题的过程中,如何从知识状态中提取信息? 只要在显示器的任何列中积累了足够的信息,就可以通过应用简单的算术过程从中推断出一个或多个新的数字分配。 比如在DONALD+GERALD=ROBERT中,如果已经赋值了D=s,那么显示变成:50NAL5+GERAL5=ROBERT,可以推断最后的T为0,这样可以将T=o加到 任务清单。推断是由“处理列”操作符进行的,该操作符将显示列(连同有关进位的信息)作为输入,并生成分配作为输出。

相反,每当将新分配添加到列表中时,只要相应字母出现在显示中,就可以通过将分配的数字替换为相应的字母来更改显示。 例如,假设我们有显示 50NAL5+G9RAL5=ROB9RT 和分配列表: (D=s, T=o, E=9) 。 假设我们现在将新分配 R=7 添加到列表中。 我们现在可以将显示更改为:50NAL5+G97AL5=708970。 在这里,输入是分配列表中的分配,输出是修改后的显示。 修改是由“替换”运算符进行的,该运算符在显示的列中搜索相关字母的实例,并在找到的任何地方用数字替换它。

用于产生新信息的其他推理过程可以在内部分别对分配列表或显示进行操作。 作为前者的示例,假设分配列表包括信息: E=9 和 R=7v9 。 然后,如果存在检查赋值一致性的过程,该过程可以得出 R=7 的推论,并将列表中的 R=7v9 替换为这个更精确的赋值。 类似地,使用 D=s 的信息处理问题的第 1 列,导致推断 T=o,并且将 1 带入第二列。 后一条信息可以直接在显示屏上输入。

现在可以用以下方式重新描述这种情况。 我们考虑两个问题空间:分配规则集的空间(显示中用数字代替字母的规则)和实例集(显示的列)的空间。目标是完成规则集,以便每个字母都有不同的分配规则。 提议的规则针对实例进行测试。 显示的每一列,我们现在将其解释为一个实例,提供了对规则一致性的部分测试。 如此描述的情况与通常的概念获得范式的不同之处仅在于实例并非完全独立,而是通过从一列到下一列的进位进行交互(图 5)。 在所有其他方面,该任务现在都是标准的概念实现任务。 简单地通过改变我们看待问题空间(或多个空间)的方式,我们已经将密码学任务从问题解决的范畴转移到概念获得、模式归纳或规则发现的范畴。

picture5

从这个例子中,我们假设区分这两类任务的标志是存在或不存在多个可区分的问题空间,问题解决活动在其中发生。如果只有一个空间,我们将问题解决描述为对该空间的搜索,通过利用到达的每个节点上可用的信息,或多或少地具有选择性和效率如果有两个空间,我们将问题解决描述为通过其中一个搜索(通常,正如我们将看到的,通过规则空间),通过使用每个空间中可用的信息来指导搜索另一个,或多或少地具有选择性和效率。通过将注意力集中在获取和利用信息的过程上,我们可以提供我们一直在为所有这些任务寻求的通用框架。

规则归纳

如果规则归纳理论要与问题解决过程理论密切相关,那么它必须由相同的基本模块构成:一个或多个生成过程,一个或多个测试过程,一个或多个选择过程应用于生成器和测试,并确定它们的应用顺序。 Newell (1968, 1973) 提出了一般问题解决方法的分类,列出了将这些模块组合到操作系统中的主要方式。 Newell 所说的“通用方法”是指对任务环境提出相对不具体要求的方法,因此具有广泛的适用性。

一些通用方法

我们将只关注 Newell 定义的三种方法:生成和测试方法启发式搜索方法归纳(或假设和匹配)方法。 我们将看到前两个是问题解决系统的特征,第三个是规则归纳系统的特征,但是它们的不同主要在于模块之间的信息流。 所有这些方法都可以利用两个子方法中的一个或两个:匹配方法方法-目的方法

至少,任何目标导向系统都必须包括一个生成新知识状态的生成器和一个确定生成器生成的状态是否实际上是解决方案状态的测试。 最简单的解决方法就是这种最小的生成和测试方法。 无论该方法具有何种功率和效率,都源自隐含在生成器和测试结构中的信息。 例如,如果生成器只能产生非常小的状态集合,并且如果这个集合能够保证包含一个解决方案,那么该方法将是强大的,因为会很快找到解决方案。 如果测试可以快速拒绝不适当的解决方案——比如通过匹配过程——那么测试的成本将相对较小。 这就是关于生成和测试方法可以或需要说的所有内容。

在生成和测试方法中,节点生成的顺序与逐渐积累的知识无关——信息仅被测试过程使用。 接下来考虑一个更复杂的系统,其中生成器不再对已产生的知识不敏感,因此信息现在从测试流回生成器。 这种反馈要求测试提供更多信息,而不仅仅是生成的知识状态与所需知识状态(目标)的规范之间的匹配成功或失败。 使用测试信息,生成器通过修改先前在搜索中产生的状态来产生新的知识状态。 这种生成对测试结果的依赖性是启发式搜索方法的特征。

我们已经评论过生成器在启发式搜索中可以使用的两种信息:第一,选择哪个信息先前生成的状态将被修改以生成下一个状态; 第二,选择几个可用算子中的哪一个将应用于知识状态以对其进行修改的信息。 如果后一种选择取决于测试检测状态和目标状态之间的特定差异,那么我们说使用方法-目的子方法

到目前为止,我们所说的一切都同样适用于问题解决和规则归纳。** 在前一种情况下,搜索以发现问题解决方案结束,在后一种情况下,搜索与发现与一组实例一致的规则**。 在这两种情况下,关键过程都是搜索和归纳过程。 对规则的搜索可以是(并且通常是)启发式搜索,并且可以使用方法-目的子方法,正如我们将要看到的。

将我们视为规则归纳任务的任务与我们视为问题解决任务的任务区分开来的是测试过程的性质。 在规则归纳任务中,通过将提议的规则应用于对象(实例),然后测试应用程序是否给出正确结果来确定是否已获得解决方案。** 测试不是直接应用于规则,而是应用于另一组表达式**,即实例,因此规则的评估采用间接路径,而从测试到生成器的信息反馈则追溯这条路径。 如果错误实例与其关联,或者存在不与其关联的真实实例,则拒绝或修改规则。

在规则归纳任务中,除了规则集空间之外,我们还可以定义实例集空间。 规则归纳系统的测试过程在实例空间内运行。 它可以包含实例生成器(除非实例是由实验者生成的)以及实例测试(它可能会或可能不会利用由实验者提供的结果的知识)。 假设整个测试过程包含在实例空间中运行的生成器和测试子进程。 反过来,这些子过程及其组织可能会在信息使用方面表现出不同程度的复杂性——例如,在从测试子流程到生成器子流程的信息反馈中。一个原始的测试过程将使用生成和测试方法;一种更强大的启发式搜索,可能包括方法-目的子方法。

在 Newell 的分类法中,如果规则和实例有单独的生成器,则系统使用归纳方法,并使用匹配过程来测试实例是否符合(关联)规则。 由于所有启发式搜索方法都是归纳法,正如我们所见,最好将此方法称为规则归纳法。 很明显,如此定义的规则归纳方法实际上是一个完整的方法集合。 变异轨迹也不限于测试过程,如最后一段所述。 实例空间和规则空间之间的信息流动也可以有各种安排——i.e.,在整个规则归纳过程的测试过程和生成过程之间(见图6)。

picture6

在最原始的系统中,没有从测试到规则生成器的信息反馈(通道_e,图 6); 该测试只是消除已生成的规则,但不提供帮助生成器选择下一个规则的信息。 在这种情况下,该方法是生成和测试方法的规则归纳版本,适用于对偶问题空间。 另一方面,如果规则生成器没有重新创建每个规则,而是根据从实例测试(通道 a. 和 e. 图 6)接收的信息修改以前的规则集来生成它,那么我们有一个 启发式搜索方法的规则归纳版本。

此外,两个空间和两个生成器的存在,一个用于规则,一个用于实例,为只有一个问题空间时不可用的方法开辟了可能性。 例如,实例生成器不需要是自治的,而是可以从已生成的规则和先前已执行的测试中获取信息——从规则空间到实例生成器的信息流(通道 b,图 6) 以及从实例空间到规则生成器(通道 a)。 因此,每个新规则都可以根据到那个点构建的实例生成(启发式搜索规则),而每个新实例可以根据到那个点构建的规则生成(启发式搜索实例) . 事实上,这正是我们将问题显示的列视为实例,将赋值列表视为规则列表时在前面描述的密码解法方法中发生的情况。

一般规则归纳程序

我们现在准备定义一个表达我们正在寻求的共同理论的正式系统。 图 7 给出了一般规则归纳 (GRI) 执行计划的定义。 为了使其尽可能具有可读性,定义以 Newell & Simon (1972, pp. 38-51) 中定义的非正式编程语言表示。

picture7

GRI 系统非常简单,由一个生成规则的子流程和第二个生成和测试实例的子流程组成。 测试的输出(测试结果)可作为规则生成器的输入,以帮助指导生成的下一步。 未指定是否会使用这些信息,以何种方式使用,取决于规则生成器的内部结构。因此** GRI 采用了生成和测试方法**。 它是否采用启发式搜索或更精细的方法取决于子流程的规范以及它们之间的信息流。 请注意,正如测试结果可用作规则生成器的输入信息一样,规则集也可用作实例生成器的输入信息。

图 7 提出专利,区分规则归纳系统和问题解决系统的唯一特征是前者的测试在与生成器不同的空间中运行,而生成器和测试在后者中使用相同的空间。 两种系统的基本发电机-测试交替是相同的。 但它们之间的相似性延伸得更远。 在问题解决系统和规则归纳系统中,生成器的选择性取决于来自测试过程的信息反馈。 因为规则归纳系统可能包含两个生成器,而不是一个,所以信息流的可能渠道数量更多,因此可能的专业系统的分类更加丰富

在图 6 中,我们展示了 GRI 中的信息流。 其中一些(用虚线表示)是“可选的”,即可以设计包含或排除它们的变体。 我们将在接下来的部分中说明这一点,当我们讨论 GRI 如何处理概念获得、系列外推和语法归纳的一些标准范式时。

GRI 能够执行刚才提到的所有任务。 我们必须谨慎对待这种说法的含义。 适合于通常的概念获取任务的概念空间不同于语法规则空间或序列模式空间。 为了解决这些领域中的任何一个问题的程序,除了所有领域通用的一般机制和组织之外,它还需要特殊的设备来处理它之前的特定领域。

这里的情况与 General Problem Solver 面临的情况相同。 GPS 是一个通用组织,用于执行手段-目的分析,并在知识状态空间中引导搜索。 在 GPS 开始处理任何特定问题之前,它必须提供问题域的规范:对象、知识状态的定义、算子、差异以及具有差异的算子的关联。 通用规则诱导器需要相同类型的问题规范来处理特定任务。 GRI 本身是一个执行程序,提供了一个专门的子流程可以在其中运行的组织。 我们现在介绍一些适用于概念形成、系列外推和语法归纳等特定任务领域的特殊子过程的例子。

概念实现

在概念实现任务的最常见的实验室形式中,受试者看到一系列在一个或多个维度上不同的刺激(例如,“大蓝色方块”)。 这些刺激中的某些是概念的实例(例如,“正方形”),其他则不是。 受试者猜测每个是否是一个实例,并被告知他是对还是错。 他的任务是诱导概念,以便他能够正确地对每个连续的刺激进行分类。 在启发式搜索术语中,主题在可能的概念空间中搜索正确的概念。 然而,引导该搜索的信息不是概念之上的信息,而是关于某些刺激是否是概念实例的信息。

鲍尔和特拉巴索等人研究的概念获得任务中的主体行为已由格雷格和西蒙(1967)在一系列程序中正式化,这些程序的个体成员仅在假设主体的信息量方面有所不同 保留作为指导概念生成器的基础(图 6 的通道 a 和 e)。Gregg & Simon 描述的计划符合 GRI 执行官的组织。

在那些没有信息反馈的程序变体中(通道 a 不起作用),只要猜测错误,生成器就会从可用概念集中随机选择一个概念。 一个稍微更高效的生成器(严格来说,它只需要通过通道 e 进行反馈以表明最后一个实例是否被正确分类)从可用概念集中随机采样,但不替换那些已经消除的概念。 一个更高效的生成器,也使用通过通道 a 的反馈,产生一个与最近实例的正确分类一致的概念。 一个更高效的生成器产生一个与所有先前实例的分类一致的概念。 根据 Gregg 和 Simon 的说法,文献中的经验数据表明,人类受试者将采用哪种方法取决于他的短期记忆的限制,以及固定信息的时间或记录信息的外部记忆的可用性。

Gregg 和 Simon 的程序描述的范式没有包含从概念空间到实例生成器的信息流(图 6 中的通道 b),因为这些实验中的实例是由实验者产生的,与受试者解决问题的能力无关 过程。 这两个空间仅通过问题解决者的猜测(分类实例图 6 和图 7)与生成的实例的正确分类相关联。 事实上,这些猜测是无关紧要的,因为信息实际上是由实验者对每个猜测的强化提供的正确或不正确 如果实验者简单地将每个实例分类为对应或不对应于概念,而无需要求,同样的问题解决方法将起作用 问题解决者的回应。 信息流完全是从实例到概念生成器,而不是相反的方向。

然而,在概念实现实验的其他形式中(Bruner, Goodnow & Austin, 1956),问题解决者自己生成实例。 当然,他可能会随机生成它们; 但他也可以选择这样构造的实例,以便在两类假设之间进行选择。 这种从规则空间到实例生成器(通道 b)的信息流使得解决方法比任何可用的单向信息流都更有效。 请注意,选择实例的标准是间接和复杂的:实例对于解决问题(找到正确的概念)很有价值,因为它们的分类信息对规则生成器的域施加了新的限制。

Gregg 和 Simon 的程序不包括主题选择实例的概念实现范式。 然而,很容易推广他们的程序以在图 7 的执行程序中涵盖这种情况。完成此操作的一组过程如图 8 所示。四个过程中的每一个——修改规则、生成实例、分类实例和测试实例类——非常简单。** 规则生成器和实例生成器体现了关于主题使用信息来增强选择性的策略的特定假设**。 规则生成器记住哪些假设已经被拒绝,并且还要求新假设与前一个实例一致。 此处提供的特定实例生成器生成一半的审判对当前规则有利,另一半对当前规则不利。 为了保证分析的完整性,我们编写并测试了图 7 和图 8 程序的 SNOBOL 版本。 通过简单的方式修改几个流程,始终使用图7的执行,可以模拟广泛的实验范式和每个范式中的主题策略。

picture8

模式序列的外推

西蒙和科托夫斯基 (Simon and Kotovsky) (1963) 以计算机程序的形式开发了一种关于人类受试者如何发现隐含在字母或数字序列中的模式并使用这些模式来推断序列的理论。Simon (1972) 已经审查了该理论与该任务中的其他表现理论以及与经验数据的关系。 模式发现程序也是图 7 模式的一个实例。

在序列外推任务中,向受试者呈现一系列符号,后跟一个或多个空格(例如,“ABMCDM_”)。 他的任务是在空白处插入“正确”的符号——即在给定序列中延续他检测到的模式的符号。 因此,目标对象是一个符号序列,其中所有的空格都被“适当地”替换了。 但是为了“适当地”填补空白,我们必须在符号对之间使用“相同”和“下一个”的概念,也许还有其他关系,以便将模式表征为推断它的基础。** 如果问题求解的特点是搜索,搜索在模式空间中进行,而不是在外推序列空间中进行**。

为了推断序列,ABMCDM,作为上面的例子,问题解决者必须归纳出该序列背后的模式:在每个时期三个字母中的第一个是我们在英文字母表中的下一个 (N) 到上一期 § 的第二个字母 (2) ; 每个周期中的第二个字母是在同一周期 (s) 中第一个字母 (1) 的下一个 (N) ; 每个周期中的第三个字母是常量字母 ‘M’ ,即与前一个周期 § 中的第三个字母 (3) 相同 (S)。 该模式可能被描述为**N2p Nls S3p’。 序列通过提供开头的 ‘A’ 和常量 ‘M’ 来初始化。

显然,外推任务中的序列元素本身是概念实现任务中实例的对应物; 而模式是概念的对应物。 什么是信息流? 正如在简单概念获得范式中一样,序列由实验者而不是问题解决者提供。 然而,在他寻找模式的过程中,问题解决者可以选择他将在任何给定时刻测试序列中的哪些元素的关系。 如果,在前面的例子中,他被提供了三个周期而不是两个——ABMCDMEFM——然后,在发现了第一个符号之后的第二个“M”三个符号后,他可以测试“M”是否在三个符号之后再次出现。 就此而言,可能存在从假设模式组件(“M”的重复)到选择接下来要检查的实例(序列的哪个部分)的信息流(通道 b,图 6)。

相反方向的信息流,从序列到模式(通道 a),对于求解方法的效率更为关键。问题解决者不需要生成“所有可能的假设”,而是可以检测序列中符号对之间的简单关系(“相同”和“下一个”),然后假设从这些关系构建的模式)匹配方法的一个例子 )。 尽管显然是归纳法,但该过程不需要涉及任何大量的搜索句子,等等,我们得到,作为语言的附加句子,BY、BBY、BBBY 等等。

假设通过先前的测试已经知道 Y 和 BY 是句子。 然后,通过将来自实例的信息提供给规则生成器,可以直接构造可能的替换规则 Y <-- BY。反转信息流,现在可以使用规则本身来生成预测句子的实例,并且这些实例的正确性可以由“本地线人”(实验者)检查。

为了匹配各种概念获得范式,可以修改任务,例如,提前提供有效句子的实例集。或者实验者可以提供句子和非句子的实例,并要求问题解决者对它们进行分类。 这两类任务在向问题解决者提供信息的方式方面在各方面都是相同的。

图 9 展示了执行语法归纳任务的过程,该任务再次使用比图 8 更复杂的 GRI 执行程序,测试两种不同类型的规则:图 7 中两种类型的基本特定生成器。这些过程有点主要 因为它们必须生成语句和替换规则。 图中未定义规则。该程序与概念实现程序一样,也在 SNOBOL 中编写和调试(具有用于基本句子和替换规则的生成器的特定版本)。 我们已经开始在语法归纳任务中收集一些关于人类行为的数据,第一次检查时,这些数据与图 7 和图 9 的程序相对吻合,但我们将不得不将这些数据的详细分析推迟到另一篇论文中。

picture9

河内塔:题外话

我们暂时离题,评论一下 Greeno 和 Egan 在他们的论文中讨论的河内塔问题,因为这个任务再次说明了问题解决任务和规则归纳任务之间的区别是多么棘手。 通常所说的问题——找到一系列移动,将所有圆盘从一个挂钩转移到另一个挂钩,受通常的移动限制——显然是一个解决问题的任务。 如果需要证明这一点,Ernst 和 Newell (1969) 已经提供了它,他们对 GPS 进行了编程,以通过手段-目的方法解决问题。

但问题可以有不同的表述:找到将磁盘从一个钉子转移到另一个钉子的规则。 可能还需要规则适用于任意数量的磁盘。 同样清楚,这是一个规则归纳任务。 为了解决这个问题,必须制定一个或多个规则空间,并通过这些空间进行搜索。 可以通过操作圆盘来获得指导这种搜索的知识——也就是说,通过搜索钉子上圆盘的排列空间。 因此,与上一段中描述的问题不同,这个河内塔问题涉及一个对偶问题空间。

河内塔的规则可以有多种形式。 一个(不完整的)规则基于以下序列:121312141… . ,其中数字是指要移动的磁盘。 稍加修改,前面讨论的顺序模式程序就可以发现这种模式。 问题的递归解决方案需要一种不同类型的规则生成器——一个理解递归定义概念的规则生成器。

总结:GRI 在特定任务环境中的应用

表 1 显示了我们如何在我们讨论过的特定任务的背景下解释 GRI 的过程:概念获得、序列外推和语法归纳。 表中的第四列显示了当被视为规则归纳任务时,如何在同一模式内处理密码任务; 而第五列显示模式的哪些组件在仅涉及单个问题空间的问题解决任务中具有对应项。

我们已经展示了在 GRI 的执行程序中描述主体行为的具体过程如何随着实验范式的特征以及主体为处理任务所采用的策略的复杂性和复杂程度而变化。

例如,在概念获得实验中,受试者通常被特别指示哪些概念是可以接受的——也就是说,他被赋予了规则空间。 他还提供了可能实例空间的明确定义。 相比之下,按顺序外推的任务通常留给主题更多。 规则空间和规则生成器通常不会在说明中明确讨论,更不用说外推的充分性或正确性的测试。 实验者提供了实例(不完整的序列)和一个不明确的目标(该序列将被外推)。 主体进化其余部分:规则空间和外推正确性测试以及定义其策略的生成器和测试过程。

主题策略的变化特别涉及使用来自每个问题空间(规则空间和实例空间)的信息来指导生成器搜索另一个。 在实验者提供的范例中其中一个生成器(例如,标准概念实现范式中的实例生成器)与主题必须设计两个生成器的范式相比,主题策略的变化空间更小(例如,以布鲁纳使用的概念实现实验的形式)、古德诺和奥斯汀)。

总结

在本文中,我们提出了问题解决和规则归纳的概念化,允许将人类思维的这两个领域纳入一个共同框架。 我们已经看到,这两个问题域都可以根据问题空间和搜索这些空间的信息过程来解释问题空间中元素的生成器可能或多或少具有选择性,这取决于它们对测试提供的信息的用途,并且在规则归纳系统和问题解决系统中都可以观察到不同程度的选择性。 规则归纳任务与问题解决任务的主要区别在于,前者需要一对问题空间,一个用于规则,一个用于实例——而后者通常只需要一个问题空间。 我们对密码算术任务的分析表明它位于两个主要类之间,因此为将它们中的每一个翻译成另一个类提供了一个有用的桥梁。

为了测试概念化并保证它不仅仅是一组类比,我们构建了一个形式化,通用规则归纳程序,以及在该程序中运行的概念获得和语法归纳的子过程 。通过 GRI,每个的任务可以正式映射到其他任务上。 这些程序的基本组成部分是生成器和测试过程,它们组织成生成-测试、启发式搜索、手段-目的和匹配方法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值