kmeans.fit_predict 和 kmeans.fit有什么区别

KMeans 是 scikit-learn 库中用于执行 K-means 聚类算法的类。fit_predictfit 是该类中的两个方法,的主要区别在于返回的内容和用途。

  1. kmeans.fit:

    • 用途: 用于训练 K-means 模型。
    • 输入: 接受一个特征矩阵(通常是二维数组)作为输入。
    • 输出: 没有返回值(返回 None),但会更新 KMeans 对象的内部状态,使其包含训练后的模型参数。
    • 示例:
      kmeans = KMeans(n_clusters=3)
      kmeans.fit(X)
      
  2. kmeans.fit_predict:

    • 用途: 用于训练 K-means 模型并返回每个样本的聚类标签。
    • 输入: 接受一个特征矩阵(通常是二维数组)作为输入。
    • 输出: 返回一个数组,其中包含每个样本的聚类标签。
    • 示例:
      kmeans = KMeans(n_clusters=3)
      labels = kmeans.fit_predict(X)
      

fit 方法仅用于训练模型,而 fit_predict 方法在训练模型的同时,还会返回每个样本的聚类标签。如果需要训练模型并立即得到聚类结果,可以使用 fit_predict。如果只需要训练模型而不需要立即得到聚类结果,可以使用 fit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值