04-GoogLeNet模型

1. 概述

       GoogLeNet模型于2014年提出,在ImageNet-1K数据集上达到了当时的SOTA,核心是Inception结构,既然不知道采用多大的卷积核 ,那就用好几种卷积核来提取特征最后再concat在一起。实现了比AlexNet性能更好,但只用了1/12的参数,因为去掉了全连接层,改用Average-Pool层,大大减小了模型的参数量大小。

        在训练时,为了避免梯度消失,引入两个分类辅助头来加速训练,在inference阶段则无需用到这两个辅助分类器。相比于VGG-Net,模型更小,训练更快,且很快收敛。

论文地址 : https://arxiv.org/abs/1409.4842https://arxiv.org/abs/1409.4842

网络结构:

2. pytorch实现GoogLeNet

2.1 模型文件 model.py

import torch
import torch.nn as nn
import torch.nn.functional as F


class BasicConv2d(nn.Module):
    """
        conv + ReLU
    """

    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()

        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)

        return x


class Inception(nn.Module):
    """
        1个 Inception 结构,丢弃了FC层,改用AveragePool层,大大减小模型参数
    """

    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1))

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2))

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1))

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]

        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):
    """
        分类辅助头,为了避免梯度消失
    """

    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # [batch, 128, 4, 4]

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1: [N, 512, 14, 14]    aux2: [N, 528, 14, 14]
        x = self.averagePool(x)
        # aux1: [N, 512, 4, 4]    aux2: [N, 528, 4, 4]
        x = self.conv(x)
        # [batch, 128, 4, 4]
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        # [batch, 2048]
        x = F.relu(self.fc1(x), inplace=True)
        # [batch, 1024]
        x = F.dropout(x, 0.5, training=self.training)
        x = self.fc2(x)
        # [batch, num_classes]

        return x


class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()

        self.aux_logits = aux_logits

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        # ceil_mode 参数为控制输出结果的形状是否向上取整
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)

        if init_weights:
            self._init_weights()

    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:  # eval model lose this layer
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:  # eval model lose this layer
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:  # eval model lose this layer
            return x, aux2, aux1

        return x

    def _init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

2.2 训练文件 train.py

import json
import sys

sys.path.append('./../')
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets
import torchvision.transforms as transforms
from utils import train, test, show_result
from model import GoogLeNet
from tqdm import tqdm
import warnings

warnings.filterwarnings("ignore")


def main():
    data_transform = {
        "train": transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
        ]),
        "test": transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
        ])
    }

    data_root = os.path.abspath(os.path.join(os.getcwd(), "../"))
    image_path = os.path.join(data_root, "data_set", "flower_data")
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)

    batch_size = 32
    number_workers = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
    print('----- Using {} dataloader workers every process. -----'.format(number_workers))

    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"), transform=data_transform["train"])
    train_num = len(train_dataset)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=number_workers)
    test_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["test"])
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=batch_size,
                                              shuffle=False,
                                              num_workers=number_workers)
    test_num = len(test_dataset)
    print('----- Using {} images for training, {} images for test. -----'.format(train_num, test_num))

    flower_list = train_dataset.class_to_idx
    # {0: 'daisy', 1: 'dandelion', 2: 'roses', 3: 'sunflowers', 4: 'tulips'}
    class_dict = dict((val, key) for key, val in flower_list.items())
    # 写入 json 文件,indent 参数为添加几个空格
    json_str = json.dumps(class_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    # ------------------------ 定义模型 ------------------------------------
    net = GoogLeNet(num_classes=5, init_weights=True, aux_logits=True).cuda()
    loss_func = nn.CrossEntropyLoss().cuda()
    optimizer = optim.SGD(net.parameters(), lr=0.0001)

    loss_es = []
    acc_es = []
    best_acc = 0
    epochs = 30
    train_steps = len(train_loader)
    # --------------------- 开始训练 ---------------------------------------
    for epoch in range(epochs):
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits, aux_logits2, aux_logits1 = net(images.cuda())
            loss0 = loss_func(logits, labels.cuda())
            loss1 = loss_func(aux_logits1, labels.cuda())
            loss2 = loss_func(aux_logits2, labels.cuda())
            loss = loss0 + loss1 * 0.3 + loss2 * 0.3
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, epochs, loss)
        loss_es.append(running_loss / train_steps)

        # ---------------------- validate -------------------------------
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(test_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.cuda())  # eval model only have last output layer
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.cuda()).sum().item()

        val_accurate = acc / len(test_dataset)
        acc_es.append(val_accurate)
        print('--- [epoch %d] train_loss: %.3f  val_accuracy: %.3f ---' % (
            epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), './results/GoogLeNet-flower.pt')

    print('Finished Training')
    show_result(loss_es, acc_es, './results/GoogLeNet-flower.jpg')


if __name__ == '__main__':
    main()

 3. 训练结果

在flower数据集上训练30轮达到了70的准确率。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值