基于Volterra级数的双线性CMA盲均衡算法及MATLAB仿真
简介
双线性CMA(Constant Modulus Algorithm)是一种常用的盲均衡算法,它通过对非线性系统进行建模,使用Volterra级数来估计信道的非线性特性,并实现信号的盲均衡。本文将详细介绍基于Volterra级数的双线性CMA盲均衡算法,并提供MATLAB源代码进行仿真。
一、双线性CMA算法原理
-
Volterra级数
Volterra级数是一种将非线性系统表示为线性和非线性部分的级数展开形式。其基本思想是将系统的输出表达为输入及其延迟项的乘积之和,其中每一项对应一个非线性特性。通过逐项估计每个非线性特性,可以还原出信道的非线性特性。 -
双线性CMA算法
双线性CMA算法使用Volterra级数建模信道非线性特性,并通过迭代优化方法,估计信号的盲均衡。算法的目标是最小化输出信号的平方差与恒模约束之间的距离,从而实现盲均衡。
算法步骤:
Step 1: 初始化参数
初始化自相关矩阵R和滤波器系数向量w。
Step 2: 计算输出信号
根据当前滤波器系数w和输入信号,计算输出信号。
Step 3: 更新滤波器系数
根据CMA算法的迭代规则,更新滤波器系数w。
Step 4: 判断终止条件
判断滤波器系数w的变化是否小于