概率论知识点总结

概率论知识点总结

第一章:概率论的基本概念

1、样本空间:对于随机试验来说,由于可以事先明确试验所有可能的结果,因此称随机试验所有可能结果的集合为随机试验的样本空间,记为 Ω \Omega Ω。称随机试验中一个可能结果为一个样本点,记为 ω \omega ω,从而样本空间就是样本点的集合,即 Ω = { ω } \Omega=\{ \omega \} Ω={ ω}
2、随机事件:一般的,称随机试验的样本空间 Ω \Omega Ω的子集为随机试验的随机事件,简称事件。在每次实验中,当且仅当随机事件所包含的样本点重点一个样本点出现时,称为这一事件发生。特别的,有一个样本点组成的单点集,称为基本事件。
3、事件的运算与关系:
Ⅰ.事件的运算
1)和事件:称事件A与事件B中至少有一个发生的事件为事件A和B的和事件。记作 A ∪ B A\cup B AB
2)积事件:称事件A和事件B同时发生的事件为A事件与B事件的积事件。记为 A ∩ B A\cap B AB
3)差事件:称事件A发生而事件B不发生的事件为事件A和事件B的差事件。记为 A − B A-B AB
4)运算律:
吸收律: 若 A ⊂ B , 则 A ∪ B = B , A B = A 若A\subset B,则A\cup B = B,AB = A ABAB=BAB=A
交换律: 若 A ∪ B = B ∪ A , A B = B A 若A\cup B=B\cup A,AB = BA AB=BAAB=BA
结合律: 若 A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C , A ( B C ) = ( A B ) C 若A\cup (B\cup C) = (A\cup B)\cup C,A(BC) = (AB)C A(BC)=(AB)CA(BC)=(AB)C
分配律: 若 A ( B ∪ C ) = A B ∪ A C , A ∪ ( B C ) = ( A ∪ B ) ( A ∪ C ) 若A(B\cup C)=AB\cup AC,A\cup (BC) = (A\cup B)(A\cup C) A(BC)=ABACA(BC)=(AB)(AC)
对偶律: ∪ i = 1 n A i ‾ = ∩ i = 1 n A i ‾ , ∩ i = 1 n A i ‾ = ∪ i = 1 n A i ‾ \overline{\cup_{i=1}^nA_i}=\cap_{i=1}^n\overline{A_i},\overline{\cap_{i=1}^nA_i}=\cup_{i=1}^n\overline{A_i} i=1nAi=i=1nAii=1nAi=i=1nAi
Ⅱ.事件的关系
1)包含关系:设A与B事件,如果A事件的发生必然导致事件B的发生则称事件B包含事件A,或称事件A是事件B的子事件,记为 A ⊂ B A\subset B AB
2)相等关系:设A与B事件,如果 A ⊂ B A\subset B AB B ⊂ A B\subset A BA,则称事件A与事件B相等,记为 A = B A = B A=B
3)互不相容(互斥)关系:设A与B事件,如果事件A和事件B同时发生是不可能的,即 A B = ∅ AB = \emptyset AB=,则称事件A与事件B是互不相容的
4)对立关系:设A与B事件,如果 A ∪ B = Ω A\cup B=\Omega AB=Ω A B = ∅ AB=\emptyset AB=,则称事件A与事件B是相互对立的,称事件B是事件A的逆事件或对立事件,记为 A ‾ \overline A A
4、概率:
P ( ∅ ) = 0 P(\emptyset)=0 P()=0
P ( ∪ i = 1 n A i ) = Σ i = 1 n P ( A i ) P(\cup_{i=1}^nA_i)=\Sigma_{i=1}^nP(A_i) P(i=1nAi)=Σi=1nP(Ai)
P ( B − A ) = P ( B ) − P ( A ) P(B-A)=P(B)-P(A) P(BA)=P(B)P(A)
P ( A ) ≤ 1 P(A)\leq 1 P(A)1
P ( A ‾ ) = 1 − P ( A ) P(\overline A)=1-P(A) P(A)=1P(A)
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
lim ⁡ n → ∞ P ( A n ) = P ( ∪ n = 1 ∞ A n ) \lim_{n\rightarrow \infty} P(A_n)=P(\cup_{n=1}^\infty A_n) limnP(An)=P(n=1An)
lim ⁡ n → ∞ P ( A n ) = P ( ∩ n = 1 ∞ A n ) \lim_{n\rightarrow \infty} P(A_n)=P(\cap_{n=1}^\infty A_n) limnP(An)=P(n=1An)
5、古典概型(几何概率)
设随机试验的样本空间 Ω = { ω 1 、 ω 2 、 ω 3 、 ω 4 ⋯ ω n } \Omega=\{ \omega_1、\omega_2、\omega_3、\omega_4 \cdots \omega_n\} Ω={ ω1ω2ω3ω4ωn},n为有限的正整数,且每个基础事件(两两互不相容的事件) ω i ( i = 1 、 2 、 3 、 4 ⋯ , n ) {\omega_i}(i=1、2、3、4\cdots,n) ωi(i=1234n)发生的可能性相同,则称这种随机试验为古典概型,或称等可能概型。
计算公式: P ( A ) = k n = 有 利 于 事 件 A 发 生 的 基 本 事 件 数 Ω 中 基 本 事 件 的 总 数 P(A)=\frac{k}{n}=\frac{有利于事件A发生的基本事件数}{\Omega中基本事件的总数} P(A)=nk=ΩA
6、条件概率和概率的三大公式
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
1)乘法公式: P ( A B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(AB)=P(A|B)P(B)=P(B|A)P(A) P(AB)=P(AB)P(B)=P(BA)P(A)
2)全概率公式:
P ( A ) = Σ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\Sigma_{i=1}^nP(B_i)P(A|B_i) P(A)=Σi=1nP(Bi)P(ABi)
P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) Σ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i|A)=\frac{P(B_i)P(A|B_i)}{\Sigma_{j=1}^nP(B_j)P(A|B_j)} P(BiA)=Σj=1nP(Bj)P(ABj)P(Bi)P(ABi)
7、事件的独立性
1) P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
2)A,B相互独立,A的运算与B的运算也相互独立
3)A,B,C相互独立,A,B,C任意两者的运算和第三事件的运算相互独立。若事件 A 1 , A 2 ⋯ A n A_1,A_2\cdots A_n A1,A2An相互独立,则其两两独立,但反之不然。
4) A 1 , A 2 ⋯ A n A_1,A_2\cdots A_n A1,A2An相互独立,则
①其中任意k个事件也相互独立
②将其中任意K个事件换成它们各自的对立事件,所得到的n个事件也相互独立
③将 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An任意分为k个没有相同事件的不同小组,并对每个小组中的事件施以和、积、差、逆运算后,所得到的k个事件也相互独立。

第二章:随机变量及其分布

1、随机变量的分布函数
设X是一个随机变量,称函数 F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(Xx)为随机变量X的分布函数。
从几何上看,如果把X看成数轴上的随机点坐标,那么分布函数F(x)就是在x处的函数值就表示X落在区间 ( − ∞ , x ] (-\infty,x ] ,x]上的(即随机点落在点x的左边)概率。
1) P ( x 1 < X ≤ x 2 ) = F ( x 2 ) − F ( x 1 ) P(x_1<X\leq x_2)=F(x_2)-F(x_1) P(x1<Xx2)=F(x2)F(x1)
2) 0 ≤ F ( x ) ≤ 1 0 \leq F(x)\leq 1 0F(x)1 F ( − ∞ ) = 0 , F ( + ∞ ) = 1 F(-\infty)=0,F(+\infty) = 1 F=0,F(+)=1
3)F(x)函数是单调不递减函数
4)F(x)是右连续的,即 F ( x + 0 ) = F ( x ) F(x+0)=F(x) Fx+0=F(x)
2、离散型随机变量的分布律
设X是离散型随机变量,其可能的取值为 x 1 , x 2 , ⋯ , x i ⋯ x_1,x_2,\cdots,x_i\cdots x1,x2,xi,称 P ( X = X i ) = p i , i = 1 , 2 , ⋯ P(X = X_i) = p_i,i=1,2,\cdots P(X=Xi)=pii=12为X的分布律。【可能值+可能值出现概率】
或表示为

X x 1 x_1 x1 x 2 x_2 x2 ⋯ \cdots x i x_i xi ⋯ \cdots
P p 1 p_1 p1 p 2 p_2 p2 ⋯ \cdots p i p_i pi ⋯ \cdots

求离散型随机变量X的分布律,其方法是:X可能的取值便是分布函数F(x)的间断点(分界点) x i ( i = 1 , 2 , ⋯   ) x_i(i=1,2,\cdots) xi(i=1,2,),从而X的分布律为 p i = P ( X = x i ) = F ( x i + 0 ) − F ( x i − 0 ) = F ( x i ) − F ( x i − 0 ) p_i=P(X=x_i)=F(x_i+0)-F(x_i-0)=F(x_i)-F(x_i-0) pi=P(X=xi)=F(xi+0)F(xi0)=F(xi)F(xi0)
3、几种重要的离散型随机变量
1)0-1分布
离散型随机变量X只能取0和1两个值,他的分布律为
P ( X = k ) = p k ( 1 − p ) 1 − k , 0 < p < 1 , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k},0<p<1,k = 0,1 P(X=k)=pk(1p)1k0<p

  • 36
    点赞
  • 147
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 概率论与数理统计是一门涉及到很多概念和公式的学科,需要花费一定的时间和精力进行复习。以下是一些复习建议: 1. 温故知新:复习前需要回顾课本、笔记或者习题集中的重点内容,掌握概念、公式和方法。这可以帮助你更好地理解难点,并准确把握需要掌握的知识点。 2. 多练习题:练习题是巩固知识和提高技能的重要途径。通过多做一些典型的习题,可以更好地理解和掌握概率论和数理统计的知识点。 3. 理解思想方法:概率论和数理统计是建立在一些基本的思想方法上的。例如,概率的计算方法、假设检验的思想、回归分析的思路等等。理解这些方法的思想,有助于理解和记忆公式和结论。 4. 找到学习方法:学习方法因人而异。有的人适合记忆公式和结论,有的人则需要理解思想方法,才能更好地掌握概率论和数理统计。在复习中,需要找到适合自己的学习方法,提高学习效率。 5. 合理安排时间:概率论和数理统计的复习需要花费一定的时间和精力。在安排复习时间时,需要合理安排每天的学习任务和时间,并注意调整自己的学习状态和心态,以保证复习效果。 ### 回答2: 概率论与数理统计是一门重要的数学学科,需要系统地进行复习和巩固。 首先,复习时应该重点关注概率论和统计学的基本概念和原理。包括概率的定义、条件概率与独立性、贝叶斯公式等基本概率理论,以及离散和连续随机变量的概率分布、期望和方差等统计学基本概念。 其次,复习时需要熟悉概率论和统计学的相关公式和定理,并能够熟练运用。例如,二项分布、正态分布、泊松分布等常见的概率分布,以及大数定律、中心极限定理等重要的概率论和统计学定理。 此外,复习时还应该进行大量的习题和例题训练。通过解答各种类型的概率论和数理统计问题,可以加深对知识点的理解和掌握。可以选择一些经典的习题和例题,也可以通过参考教材上的习题集和相关的辅导资料进行练习。 最后,需要留出足够的时间进行综合复习和总结。将已学的知识进行归纳和总结,形成自己的复习笔记和思维导图,方便日后查阅。同时,还可以找一些相关的综合性试题进行模拟考试,检验自己的学习成果。 总之,概率论与数理统计的复习需要系统性和综合性。通过理论概念的复习、公式和定理的熟练应用、大量习题的训练以及综合性的总结和模拟考试,可以加深对概率论和数理统计的理解和掌握,为应对考试做好充分准备。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值