概率论知识点总结

概率论知识点总结

第一章:概率论的基本概念

1、样本空间:对于随机试验来说,由于可以事先明确试验所有可能的结果,因此称随机试验所有可能结果的集合为随机试验的样本空间,记为 Ω \Omega Ω。称随机试验中一个可能结果为一个样本点,记为 ω \omega ω,从而样本空间就是样本点的集合,即 Ω = { ω } \Omega=\{ \omega \} Ω={ω}
2、随机事件:一般的,称随机试验的样本空间 Ω \Omega Ω的子集为随机试验的随机事件,简称事件。在每次实验中,当且仅当随机事件所包含的样本点重点一个样本点出现时,称为这一事件发生。特别的,有一个样本点组成的单点集,称为基本事件。
3、事件的运算与关系:
Ⅰ.事件的运算
1)和事件:称事件A与事件B中至少有一个发生的事件为事件A和B的和事件。记作 A ∪ B A\cup B AB
2)积事件:称事件A和事件B同时发生的事件为A事件与B事件的积事件。记为 A ∩ B A\cap B AB
3)差事件:称事件A发生而事件B不发生的事件为事件A和事件B的差事件。记为 A − B A-B AB
4)运算律:
吸收律: 若 A ⊂ B , 则 A ∪ B = B , A B = A 若A\subset B,则A\cup B = B,AB = A ABAB=BAB=A
交换律: 若 A ∪ B = B ∪ A , A B = B A 若A\cup B=B\cup A,AB = BA AB=BAAB=BA
结合律: 若 A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C , A ( B C ) = ( A B ) C 若A\cup (B\cup C) = (A\cup B)\cup C,A(BC) = (AB)C A(BC)=(AB)CA(BC)=(AB)C
分配律: 若 A ( B ∪ C ) = A B ∪ A C , A ∪ ( B C ) = ( A ∪ B ) ( A ∪ C ) 若A(B\cup C)=AB\cup AC,A\cup (BC) = (A\cup B)(A\cup C) A(BC)=ABACA(BC)=(AB)(AC)
对偶律: ∪ i = 1 n A i ‾ = ∩ i = 1 n A i ‾ , ∩ i = 1 n A i ‾ = ∪ i = 1 n A i ‾ \overline{\cup_{i=1}^nA_i}=\cap_{i=1}^n\overline{A_i},\overline{\cap_{i=1}^nA_i}=\cup_{i=1}^n\overline{A_i} i=1nAi=i=1nAii=1nAi=i=1nAi
Ⅱ.事件的关系
1)包含关系:设A与B事件,如果A事件的发生必然导致事件B的发生则称事件B包含事件A,或称事件A是事件B的子事件,记为 A ⊂ B A\subset B AB
2)相等关系:设A与B事件,如果 A ⊂ B A\subset B AB B ⊂ A B\subset A BA,则称事件A与事件B相等,记为 A = B A = B A=B
3)互不相容(互斥)关系:设A与B事件,如果事件A和事件B同时发生是不可能的,即 A B = ∅ AB = \emptyset AB=,则称事件A与事件B是互不相容的
4)对立关系:设A与B事件,如果 A ∪ B = Ω A\cup B=\Omega AB=Ω A B = ∅ AB=\emptyset AB=,则称事件A与事件B是相互对立的,称事件B是事件A的逆事件或对立事件,记为 A ‾ \overline A A
4、概率:
P ( ∅ ) = 0 P(\emptyset)=0 P()=0
P ( ∪ i = 1 n A i ) = Σ i = 1 n P ( A i ) P(\cup_{i=1}^nA_i)=\Sigma_{i=1}^nP(A_i) P(i=1nAi)=Σi=1nP(Ai)
P ( B − A ) = P ( B ) − P ( A ) P(B-A)=P(B)-P(A) P(BA)=P(B)P(A)
P ( A ) ≤ 1 P(A)\leq 1 P(A)1
P ( A ‾ ) = 1 − P ( A ) P(\overline A)=1-P(A) P(A)=1P(A)
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
lim ⁡ n → ∞ P ( A n ) = P ( ∪ n = 1 ∞ A n ) \lim_{n\rightarrow \infty} P(A_n)=P(\cup_{n=1}^\infty A_n) limnP(An)=P(n=1An)
lim ⁡ n → ∞ P ( A n ) = P ( ∩ n = 1 ∞ A n ) \lim_{n\rightarrow \infty} P(A_n)=P(\cap_{n=1}^\infty A_n) limnP(An)=P(n=1An)
5、古典概型(几何概率)
设随机试验的样本空间 Ω = { ω 1 、 ω 2 、 ω 3 、 ω 4 ⋯ ω n } \Omega=\{ \omega_1、\omega_2、\omega_3、\omega_4 \cdots \omega_n\} Ω={ω1ω2ω3ω4ωn},n为有限的正整数,且每个基础事件(两两互不相容的事件) ω i ( i = 1 、 2 、 3 、 4 ⋯ , n ) {\omega_i}(i=1、2、3、4\cdots,n) ωi(i=1234n)发生的可能性相同,则称这种随机试验为古典概型,或称等可能概型。
计算公式: P ( A ) = k n = 有 利 于 事 件 A 发 生 的 基 本 事 件 数 Ω 中 基 本 事 件 的 总 数 P(A)=\frac{k}{n}=\frac{有利于事件A发生的基本事件数}{\Omega中基本事件的总数} P(A)=nk=ΩA
6、条件概率和概率的三大公式
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
1)乘法公式: P ( A B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(AB)=P(A|B)P(B)=P(B|A)P(A) P(AB)=P(AB)P(B)=P(BA)P(A)
2)全概率公式:
P ( A ) = Σ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\Sigma_{i=1}^nP(B_i)P(A|B_i) P(A)=Σi=1nP(Bi)P(ABi)
P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) Σ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i|A)=\frac{P(B_i)P(A|B_i)}{\Sigma_{j=1}^nP(B_j)P(A|B_j)} P(BiA)=Σj=1nP(Bj)P(ABj)P(Bi)P(ABi)
7、事件的独立性
1) P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
2)A,B相互独立,A的运算与B的运算也相互独立
3)A,B,C相互独立,A,B,C任意两者的运算和第三事件的运算相互独立。若事件 A 1 , A 2 ⋯ A n A_1,A_2\cdots A_n A1,A2An相互独立,则其两两独立,但反之不然。
4) A 1 , A 2 ⋯ A n A_1,A_2\cdots A_n A1,A2An相互独立,则
①其中任意k个事件也相互独立
②将其中任意K个事件换成它们各自的对立事件,所得到的n个事件也相互独立
③将 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An任意分为k个没有相同事件的不同小组,并对每个小组中的事件施以和、积、差、逆运算后,所得到的k个事件也相互独立。

第二章:随机变量及其分布

1、随机变量的分布函数
设X是一个随机变量,称函数 F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(Xx)为随机变量X的分布函数。
从几何上看,如果把X看成数轴上的随机点坐标,那么分布函数F(x)就是在x处的函数值就表示X落在区间 ( − ∞ , x ] (-\infty,x ] ,x]上的(即随机点落在点x的左边)概率。
1) P ( x 1 < X ≤ x 2 ) = F ( x 2 ) − F ( x 1 ) P(x_1<X\leq x_2)=F(x_2)-F(x_1) P(x1<Xx2)=F(x2)F(x1)
2) 0 ≤ F ( x ) ≤ 1 0 \leq F(x)\leq 1 0F(x)1 F ( − ∞ ) = 0 , F ( + ∞ ) = 1 F(-\infty)=0,F(+\infty) = 1 F=0,F(+)=1
3)F(x)函数是单调不递减函数
4)F(x)是右连续的,即 F ( x + 0 ) = F ( x ) F(x+0)=F(x) Fx+0=F(x)
2、离散型随机变量的分布律
设X是离散型随机变量,其可能的取值为 x 1 , x 2 , ⋯ , x i ⋯ x_1,x_2,\cdots,x_i\cdots x1,x2,xi,称 P ( X = X i ) = p i , i = 1 , 2 , ⋯ P(X = X_i) = p_i,i=1,2,\cdots P(X=Xi)=pii=12为X的分布律。【可能值+可能值出现概率】
或表示为

X x 1 x_1 x1 x 2 x_2 x2 ⋯ \cdots x i x_i xi ⋯ \cdots
P p 1 p_1 p1 p 2 p_2 p2 ⋯ \cdots p i p_i pi ⋯ \cdots

求离散型随机变量X的分布律,其方法是:X可能的取值便是分布函数F(x)的间断点(分界点) x i ( i = 1 , 2 , ⋯   ) x_i(i=1,2,\cdots) xi(i=1,2,),从而X的分布律为 p i = P ( X = x i ) = F ( x i + 0 ) − F ( x i − 0 ) = F ( x i ) − F ( x i − 0 ) p_i=P(X=x_i)=F(x_i+0)-F(x_i-0)=F(x_i)-F(x_i-0) pi=P(X=xi)=F(xi+0)F(xi0)=F(xi)F(xi0)
3、几种重要的离散型随机变量
1)0-1分布
离散型随机变量X只能取0和1两个值,他的分布律为
P ( X = k ) = p k ( 1 − p ) 1 − k , 0 < p < 1 , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k},0<p<1,k = 0,1 P(X=k)=pk(1p)1k0<p<1k=0,1
2)二项分布(记为X~ B ( n , p ) B(n,p) Bnp)
离散型随机变量X的分布律为
P ( X = k ) = C n k p k q n − k , q = 1 − p , k = 0 , 1 , 2 , ⋯ , n P(X=k)=C_n^kp^kq^{n-k},q =1-p,k=0,1,2,\cdots,n P(X=k)=Cnkpkqnkq=1pk=012n
3)Poisson分布(记为X~ P ( λ ) P(\lambda) P(λ))
离散型随机变量X的分布律为
P ( X = k ) = λ k k ! e − λ , λ > 0 , k = 0 , 1 , 2 , ⋯ P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},\lambda>0,k=0,1,2,\cdots P(X=k)=k!λkeλλ>0k=0,1,2,
[Poisson定理]:设 λ > 0 \lambda>0 λ>0是一个常数,n是任意的正整数, n p = λ np=\lambda np=λ,则对任意固定的非负整数k,有 lim ⁡ n → ∞ C n k p k ( 1 − p ) n − k = λ k k ! e − λ \lim_{n\rightarrow\infty C_n^kp^k(1-p)^{n-k}}=\frac{\lambda^k}{k!}e^{-\lambda} limnCnkpk(1p)nk=k!λkeλ
4)几何分布
离散型随机变量X的分布律为
P ( X = k ) = q k − 1 p , k = 1 , 2 , ⋯ , 0 < p < 1 , q = 1 − p P(X=k)=q^{k-1}p,k=1,2,\cdots,0<p<1,q=1-p P(X=k)=qk1pk=120<p<1,q=1p
5)超几何分布(记为X~ h ( N , n , k ) h(N,n,k) h(N,n,k))
若从N件产品,其中有M件次品中,任取n件,则随机变量X的分布律为 P ( X = k ) = C M k C N − M n − k C M k , k = 0 , 1 , 2 , ⋯ , m i n { M , n } P(X=k)=\frac{C_M^kC_{N-M}^{n-k}}{C^k_M},k = 0,1,2,\cdots,min\{M,n\} P(X=k)=CMkCMkCNMnkk=012min{Mn}
N → ∞ N\rightarrow\infty N时, M N → p \frac{M}{N}\rightarrow p NMp,则 lim ⁡ N → ∞ C M k C N − M n − k C N n = lim ⁡ N → ∞ P ( X = k ) = C n k p k q n − k \lim_{N\rightarrow\infty}\frac{C_M^kC_{N-M}^{n-k}}{C_N^n}=\lim_{N\rightarrow\infty}P(X=k)=C_n^kp^kq^{n-k} limNCNnCMkCNMnk=limNP(X=k)=Cnkpkqnk
4、连续性随机变量的概率密度
设X是随机变量,其分布函数为F(x),如果存在非负可积函数f(x),使得 F ( x ) = ∫ − ∞ x f ( t ) d t , − ∞ < x < + ∞ F(x)=\int_{-\infty}^xf(t)dt,-\infty<x<+\infty Fx=xf(t)dt<x<+则称X为连续型随机变量,称f(x)为X的概率密度函数,简称概率密度。
f ( x ) > = 0 f(x)>=0 f(x)>=0
∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x)dx=1 +f(x)dx=1
P ( a < X ≤ b ) = ∫ a b f ( x ) d x = 1 P(a<X\leq b)=\int_a^bf(x)dx=1 P(a<Xb)=abf(x)dx=1
在f(x)的连续点x处,有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)
[不可能事件的概率是零,但概率是零的事件未必是不可能事件]
5、几种重要的连续型随机变量
1)均匀分布
若连续型随机变量X的概率密度为
f ( x ) = 1 b − a , a < x < b ; 0 , 其 他 f(x) = \frac{1}{b-a},a<x<b;0,其他 f(x)=ba1,a<x<b;0,
则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)
2)正态分布
若连续型随机变量X的概率密度为
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2
其中, μ 、 σ \mu、\sigma μσ为常数,则称X服从参数为 μ 、 σ 2 \mu、\sigma^2 μσ2的正态分布或高斯分布Gauss,记为X~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
把X~N(0,1)称作标准正态分布,即 f ( x ) = 1 2 π e − x 2 2 f(x) =\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} f(x)=2π 1e2x2
若X~N( μ , σ 2 \mu,\sigma^2 μ,σ2)把 Z = X − μ σ Z =\frac{X-\mu}{\sigma} Z=σXμ~N(0,1),称作Z为X的标准化
对于X~N( μ , σ 2 \mu,\sigma^2 μ,σ2),则
F ( x ) = Φ ( x − μ σ ) F(x) = \Phi(\frac{x-\mu}{\sigma}) F(x)=Φ(σxμ)
∀ x 1 < x 2 , P ( x 1 < X ≤ x 2 ) = Φ ( x 2 − μ σ ) − Φ ( x 1 − μ σ ) \forall x_1<x_2,P(x_1<X\leq x_2) = \Phi(\frac{x_2-\mu}{\sigma}) - \Phi(\frac{x_1-\mu}{\sigma}) x1<x2,P(x1<Xx2)=Φ(σx2μ)Φ(σx1μ)
3)指数分布
若连续型随机变量X的概率密度为
f ( x ) = λ e − λ x , x > 0 ; 0 , x ≤ 0 f(x) = \lambda e^{-\lambda x},x>0;0,x\leq 0 f(x)=λeλx,x>0;0,x0
其中, λ > 0 \lambda>0 λ>0为常数,则称X服从参数为 λ \lambda λ的指数分布,记为X~E( λ \lambda λ
指数分布具有无记忆性,即 P ( X > s + t ∣ X > s ) = P ( X > t ) P(X>s+t|X>s) = P(X>t) P(X>s+tX>s)=P(X>t)
6、随机变量函数及其分布
离散型随即变量的函数的分布按照 x i x_i xi依次列写
连续性随机变量的函数其概率密度求法:
1、分布函数法
y = 2 x + 1 y = 2x+1 y=2x+1 x = y − 1 2 x = \frac{y-1}{2} x=2y1,然后积分
2、公式法
f y ( y ) = f x ( h ( y ) ) ∣ h ′ ( y ) ∣ , y ⊆ I ; 0 , 其 他 f_y(y) = f_x(h(y))|h^{'}(y)|,y \subseteq I;0,其他 fy(y)=fx(h(y))h(y)yI;0
其中:x=h(y)是y=g(x)的反函数;I是使得 f x ( h ( y ) ) > 0 f_x(h(y))>0 fx(h(y))>0 h ( y ) 和 h ′ ( y ) h(y)和h^{'}(y) h(y)h(y)有意义的y的集合

第三章 多维随机变量及其分布

1、联合分布函数及其性质
设(X,Y)是二维随机变量,称二元函数
F ( x , y ) = P ( X ≤ x , Y ≤ y ) , x 、 y ⊆ R F(x,y) = P(X\leq x,Y\leq y),x、y \subseteq R F(x,y)=P(Xx,Yy)xyR
为二维随机变量(X,Y)的联合分布函数
性质:
对于二维随机变量(X,Y)的联合分布函数,则 P ( x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 ) = F ( x 2 , y 2 ) − F ( x 1 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) P(x_1<X\leq x_2,y_1<Y\leq y_2) = F(x2,y2)-F(x1,y2)-F(x2,y1)+F(x1,y1) P(x1<Xx2,y1<Yy2)=F(x2,y2)F(x1,y2)F(x2,y1)+F(x1,y1)
类比一维(线)到二维(面)的长度(面积)计算推广形式
F ( − ∞ , y ) = F ( x , − ∞ ) = F ( − ∞ , ∞ ) = 0 F(-\infty,y) = F(x,-\infty) = F(-\infty,\infty) = 0 F(y)=F(x)=F()=0
F ( + ∞ , + ∞ ) = 1 F(+\infty,+\infty) = 1 F(++)=1
固 定 y , F ( x + 0 , y ) = F ( x , y ) ; 固 定 x , F ( x , y + 0 ) = F ( x , y ) 固定y,F(x+0,y) = F(x,y);固定x,F(x,y+0) = F(x,y) yF(x+0,y)=F(x,y)xF(x,y+0)=F(x,y)
2、二维离散型随机变量的联合分布律
表示为
P ( X = x i , Y = y j ) = p i j , i , j = 1 , 2 ⋯ P(X=x_i,Y=y_j) = p_{ij},i,j=1,2\cdots P(X=xi,Y=yj)=pij,i,j=1,2

x / y x /y x/y y 1 y_1 y1 y 2 y_2 y2 ⋯ \cdots y j y_j yj ⋯ \cdots
x 1 x_1 x1 p 11 p_{11} p11 p 12 p_{12} p12 ⋯ \cdots p 1 j p_{1j} p1j ⋯ \cdots
x 2 x_2 x2 p 21 p_{21} p21 p 22 p_{22} p22 ⋯ \cdots p 2 j p_{2j} p2j ⋯ \cdots
⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots
x i x_i xi p i 1 p_{i1} pi1 p i 2 p_{i2} pi2 ⋯ \cdots p i j p_{ij} pij ⋯ \cdots
⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots

3、二维连续型随机变量及其联合概率密度
设(X,Y)是二维随机变量,其联合分布函数为F(x,y),如果存在非负可积函数f(x,y),使得
F ( x , y ) = ∫ − ∞ x ∫ ∞ y f ( u , v ) d u d v , x , y ⊆ R F(x,y) = \int_{-\infty}^{x}\int_{_\infty}^{y} f(u,v)dudv,x,y \subseteq R F(x,y)=xyf(u,v)dudvx,yR
则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的联合概率密度函数,简称联合概率密度
性质:
F ( x , y ⊆ G ) = ∬ G f ( x , y ) d x d y F(x,y\subseteq G) = \iint_G f(x,y)dxdy F(x,yG)=Gf(x,y)dxdy
在f(x,y)的连续点上, ∂ 2 F ( x , y ) ∂ x ∂ y = ∂ 2 F ( x , y ) ∂ y ∂ x = f ( x , y ) \frac{\partial^2 F(x,y)}{\partial x\partial y} = \frac{\partial^2 F(x,y)}{\partial y\partial x} = f(x,y) xy2F(x,y)=yx2F(x,y)=f(x,y)
4、几种重要的二维连续型随机变量
二维均匀分布
若二维连续型随机变量(X,Y)的联合概率密度为
f ( x , y ) = 1 A , ( x , y ) ⊆ G ; 0 , 其 他 f(x,y) = \frac{1}{A},(x,y)\subseteq G;0,其他 f(x,y)=A1(x,y)G;0,
其中,A为区域G的面积,则称(X,Y)在G区域上均匀分布,记为(X,Y)~U(G)
这种分布等价于平面区域上的几何概率
二维正态分布
若连续型随机变量(X,Y)的联合概率密度为
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{}1-\rho^2}e^{-\frac{1}{2(1-\rho^2)}[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}]} f(x,y)=2πσ1σ2 1ρ21e2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]
记为(X,Y)~N( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ \mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho μ1,μ2;σ12,σ22;ρ
5、边缘分布
设(X,Y)是二维随机变量,称
F X ( x ) = P ( X ≤ x ) F_X(x) = P(X\leq x) FX(x)=P(Xx)
F Y ( y ) = P ( Y ≤ y ) F_Y(y) = P(Y\leq y) FY(y)=P(Yy)
分别为(X,Y)关于X,Y的边缘分布函数
性质:
F X ( x ) = F ( x , + ∞ ) , x ⊆ R F_X(x) = F(x,+\infty),x\subseteq R FX(x)=F(x,+),xR
F Y ( y ) = F ( + ∞ , y ) , y ⊆ R F_Y(y) = F(+\infty,y),y\subseteq R FY(y)=F(+,y),yR
F X ( x ) = ∫ R f ( x , y ) d y , x ⊆ R F_X(x) = \int_Rf(x,y)dy,x\subseteq R FX(x)=Rf(x,y)dy,xR
F Y ( y ) = ∫ R f ( x , y ) d x , y ⊆ R F_Y(y) = \int_Rf(x,y)dx,y\subseteq R FY(y)=Rf(x,y)dx,yR
对于不同的二维联合分布,可能对应相同的边缘分布,故不能由边缘分布推出二位联合分布(如果变量独立那么允许唯一推出),反之可以。且对于二维正态分布,边缘分布均为正态分布的情况下,也不一定是二维正态分布。
6、条件概率
离散型随机变量的条件概率
对于固定的j: P ( X = x i ∣ Y = y j ) = p i j p ⋅ j , i = 1 , 2 , 3 ⋯ P(X=x_i|Y=y_j) = \frac{p_{ij}}{p_{\cdot j}},i = 1,2,3\cdots P(X=xiY=yj)=pjpij,i=1,2,3
对于固定的i: P ( Y = y j ∣ X = x i ) = p i j p i ⋅ , i = 1 , 2 , 3 ⋯ P(Y=y_j|X=x_i) = \frac{p_{ij}}{p_{i\cdot}},i = 1,2,3\cdots P(Y=yjX=xi)=pipij,i=1,2,3
连续型随机变量的条件概率
对于固定的y: f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} fXY(xy)=fY(y)f(x,y)
对于固定的x: f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} fYX(yx)=fX(x)f(x,y)
7、二维随机变量函数及其分布

总结1:常见的随机变量分布

1)0-1分布
P ( X = k ) = p k ( 1 − p ) 1 − k , 0 < p < 1 , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k},0<p<1,k = 0,1 P(X=k)=pk(1p)1k0<p<1k=0,1
2)二项分布(记为X~ B ( n , p ) B(n,p) Bnp)
P ( X = k ) = C n k p k q n − k , q = 1 − p , k = 0 , 1 , 2 , ⋯ , n P(X=k)=C_n^kp^kq^{n-k},q =1-p,k=0,1,2,\cdots,n P(X=k)=Cnkpkqnkq=1pk=012n
3)Poisson分布(记为X~ P ( λ ) P(\lambda) P(λ))
P ( X = k ) = λ k k ! e − λ , λ > 0 , k = 0 , 1 , 2 , ⋯ P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},\lambda>0,k=0,1,2,\cdots P(X=k)=k!λkeλλ>0k=0,1,2,
4)几何分布
P ( X = k ) = q k − 1 p , k = 1 , 2 , ⋯ , 0 < p < 1 , q = 1 − p P(X=k)=q^{k-1}p,k=1,2,\cdots,0<p<1,q=1-p P(X=k)=qk1pk=120<p<1,q=1p
5)超几何分布(记为X~ h ( N , M , n ) h(N,M,n) h(N,M,n))
P ( X = k ) = C M k C N − M n − k C M k , k = 0 , 1 , 2 , ⋯ , m i n { M , n } P(X=k)=\frac{C_M^kC_{N-M}^{n-k}}{C^k_M},k = 0,1,2,\cdots,min\{M,n\} P(X=k)=CMkCMkCNMnkk=012min{Mn}
6)均匀分布(X~U(a,b))
f ( x ) = 1 b − a , a < x < b ; 0 , 其 他 f(x) = \frac{1}{b-a},a<x<b;0,其他 f(x)=ba1,a<x<b;0,
7)正态分布(X~N( μ , σ 2 \mu,\sigma^2 μ,σ2))
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2
8)指数分布(X~E( λ \lambda λ))
f ( x ) = λ e − λ x , x > 0 ; 0 , x ≤ 0 f(x) = \lambda e^{-\lambda x},x>0;0,x\leq 0 f(x)=λeλx,x>0;0,x0
9)二维均匀分布(X~U(G))
f ( x , y ) = 1 A , ( x , y ) ⊆ G ; 0 , 其 他 f(x,y) = \frac{1}{A},(x,y)\subseteq G;0,其他 f(x,y)=A1(x,y)G;0,
10)二维正态分布((X,Y)~N( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ \mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho μ1,μ2;σ12,σ22;ρ))
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{}1-\rho^2}e^{-\frac{1}{2(1-\rho^2)}[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}]} f(x,y)=2πσ1σ2 1ρ21e2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]

第四章:随机变量的数字特征

1、期望
E X = Σ x i p i ( 离 散 型 ) EX = \Sigma x_ip_i(离散型) EX=Σxipi()

E X = ∫ − ∞ ∞ x f ( x ) d x ( 连 续 型 ) EX = \int_{-\infty}^\infty xf(x)dx(连续型) EX=xf(x)dx()

E Y = E g ( x ) = Σ g ( x i ) p i ( 离 散 型 随 机 变 量 函 数 ) EY = Eg(x) = \Sigma g(x_i)p_i(离散型随机变量函数) EY=Eg(x)=Σg(xi)pi()

E Y = E g ( x ) = ∫ − ∞ ∞ g ( x ) f ( x ) d x ( 连 续 型 随 机 变 量 函 数 ) EY = Eg(x) = \int_{-\infty}^\infty g(x)f(x)dx(连续型随机变量函数) EY=Eg(x)=g(x)f(x)dx()

E Z = E g ( X , Y ) = Σ Σ g ( x i , y i ) p i j ( 离 散 型 二 维 随 机 变 量 ) EZ = Eg(X,Y) = \Sigma\Sigma g(x_i,y_i)p_{ij}(离散型二维随机变量) EZ=Eg(X,Y)=ΣΣg(xi,yi)pij()

E Z = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x , y ) f ( x , y ) d x d y ( 连 续 型 二 维 随 机 变 量 ) EZ = \int_{-\infty}^\infty\int_{-\infty}^\infty g(x,y)f(x,y)dxdy(连续型二维随机变量) EZ=g(x,y)f(x,y)dxdy()
2、期望的性质
E C = C EC = C EC=C

E C X = C E X ECX = CEX ECX=CEX

E X + Y = E X + E Y EX+Y = EX+EY EX+Y=EX+EY

E X Y = E X ⋅ E Y EXY = EX\cdot EY EXY=EXEY
3、方差
D X = E ( X − E X ) 2 DX = E(X - EX)^2 DX=E(XEX)2

D X = E X 2 − ( E X ) 2 DX = EX^2 - (EX)^2 DX=EX2(EX)2
4、方差的性质
D C = 0 DC = 0 DC=0

D ( X + C ) = D X D(X+C) = DX D(X+C)=DX

D X + Y = D X + D Y ( X , Y 要 求 相 互 独 立 ) DX+Y = DX+DY(X,Y要求相互独立) DX+Y=DX+DY(X,Y)

D X = 0 的 充 要 条 件 是 P ( X = E X ) = 1 DX=0的充要条件是P(X=EX) = 1 DX=0PX=EX=1
5、协方差和相关系数
c o v ( X , Y ) = E ( X − E X ) ( Y − E Y ) cov(X,Y) = E(X-EX)(Y-EY) cov(X,Y)=E(XEX)(YEY)

c o v ( X , Y ) = E ( X Y ) − E X ⋅ E Y cov(X,Y) = E(XY)-EX\cdot EY cov(X,Y)=E(XY)EXEY

ρ X Y = c o v ( X , Y ) D X D Y \rho_{XY} = \frac{cov(X,Y)}{\sqrt{DX}\sqrt{DY}} ρXY=DX DY cov(X,Y)
6、协方差和相关系数的性质
c o v ( X , X ) = D X cov(X,X) = DX cov(X,X)=DX

c o v ( X , Y ) = c o v ( Y , X ) cov(X,Y) = cov(Y,X) cov(X,Y)=cov(Y,X)

c o v ( a X + b , c Y + d ) = a c ⋅ c o v ( X , Y ) cov(aX+b,cY+d) = ac\cdot cov(X,Y) cov(aX+b,cY+d)=accov(X,Y)

c o v ( X 1 + X 2 , Y ) = c o v ( X 1 , Y ) + c o v ( X 2 , Y ) cov(X_1+X_2,Y) = cov(X_1,Y)+cov(X_2,Y) cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y)

D ( X ± Y ) = D X + D Y ± 2 c o v ( X , Y ) D(X\pm Y) = DX+DY\pm 2cov(X,Y) D(X±Y)=DX+DY±2cov(X,Y)

若 E X 和 E Y < ∞ , 则 [ E ( X Y ) ] 2 ≤ E X 2 E Y 2 若EX和EY<\infty,则[E(XY)]^2\leq EX^2EY^2 EXEY<[E(XY)]2EX2EY2

∣ ρ X Y ∣ ≤ 1 |\rho_{XY}|\leq 1 ρXY1

若 X , Y 相 互 独 立 且 方 差 均 大 于 零 , 则 ρ X Y = 0 若X,Y相互独立且方差均大于零,则\rho_{XY} = 0 X,YρXY=0

∣ ρ X Y = 1 ∣ 的 充 要 条 件 为 存 在 常 数 a 与 b , 使 得 P ( Y = a X + b ) = 1 |\rho_{XY} = 1|的充要条件为存在常数a与b,使得P(Y=aX+b)=1 ρXY=1ab,使PY=aX+b=1

X , Y 不 相 关 的 充 要 条 件 为 c o v ( X , Y ) = 0 , E ( X Y ) = E X ⋅ E Y , D ( X ± Y ) = D X + D Y , D ( X + Y ) = D ( X − Y ) X,Y不相关的充要条件为cov(X,Y)=0,E(XY) = EX\cdot EY,D(X\pm Y)=DX+DY,D(X+Y) = D(X-Y) X,Ycov(X,Y)=0,E(XY)=EXEY,D(X±Y)=DX+DY,D(X+Y)=D(XY)

7、矩
E X k 叫 做 X 的 k 阶 原 点 距 EX^k叫做X的k阶原点距 EXkXk

E ( X − E X ) k 叫 做 X 的 k 阶 中 心 矩 E(X-EX)^k叫做X的k阶中心矩 E(XEX)kXk

E X k Y l 叫 做 X Y 的 k + l 阶 混 合 原 点 距 EX^kY^l叫做XY的k+l阶混合原点距 EXkYlXYk+l

E ( X − E X ) k ( Y − E Y ) l 叫 做 X Y 的 k + l 阶 混 合 中 心 矩 E(X-EX)^k(Y-EY)^l叫做XY的k+l阶混合中心矩 E(XEX)k(YEY)lXYk+l

在这里插入图片描述

第五章:大数定理及中心极限定理

1、切比雪夫不等式Chebyshev
P ( ∣ X − E X ∣ ≥ ε ) ≤ X ε 2 P(|X-EX|\geq \varepsilon)\leq\frac{X}{\varepsilon^2} P(XEXε)ε2X

P ( ∣ X − E X ∣ < ε ) ≥ 1 − X ε 2 P(|X-EX| < \varepsilon)\geq 1 - \frac{X}{\varepsilon^2} P(XEX<ε)1ε2X
2、Chebyshev大数定理
设 X 1 , X 2 , ⋯ X n 是 相 互 独 立 的 , 具 有 相 同 的 数 学 期 望 和 方 差 , 即 E X i = μ , D X i = σ 2 , 则 任 取 ε > 0 , 有 l i m n − > ∞ P ( ∣ 1 n Σ X i − μ ∣ ≥ ε ) = 0 设X_1,X_2,\cdots X_n是相互独立的,具有相同的数学期望和方差,即EX_i=\mu,DX_i =\sigma^2,则任取\varepsilon>0,有lim_{n->\infty}P(|\frac{1}{n}\Sigma X_i - \mu|\geq\varepsilon) = 0 X1,X2,XnEXi=μ,DXi=σ2ε>0limn>P(n1ΣXiμε)=0
更一般都形式:
设 X 1 , X 2 , ⋯ X n 是 相 互 独 立 的 , 具 有 相 同 的 数 学 期 望 , 即 E X i = μ , 若 存 在 C > 0 , 使 D X i ≤ C , 则 任 取 ε > 0 , 有 l i m n − > ∞ P ( ∣ 1 n Σ X i − μ ∣ ≥ ε ) = 0 设X_1,X_2,\cdots X_n是相互独立的,具有相同的数学期望,即EX_i=\mu,若存在C>0,使DX_i\leq C,则任取\varepsilon>0,有lim_{n->\infty}P(|\frac{1}{n}\Sigma X_i - \mu|\geq\varepsilon) = 0 X1,X2,XnEXi=μC>0,使DXiCε>0limn>P(n1ΣXiμε)=0
3、Markov大数定理
设 X 1 , X 2 , ⋯ X n 是 随 机 变 量 序 列 , 且 l i m n − > ∞ 1 n 2 D Σ X i = 0 , 则 任 取 ε > 0 , 有 l i m n − > ∞ P ( ∣ 1 n Σ X i − 1 n Σ E X i ∣ ≥ ε ) = 0 设X_1,X_2,\cdots X_n是随机变量序列,且lim_{n->\infty}\frac{1}{n^2}D\Sigma X_i = 0,则任取\varepsilon>0,有lim_{n->\infty}P(|\frac{1}{n}\Sigma X_i - \frac{1}{n}\Sigma EX_i|\geq\varepsilon) = 0 X1,X2,Xnlimn>n21DΣXi=0ε>0limn>P(n1ΣXin1ΣEXiε)=0
4、Khintchine大数定理
设 X 1 , X 2 , ⋯ X n 是 相 互 独 立 且 同 分 布 的 随 机 变 量 , 具 有 有 限 的 数 学 期 望 , 即 E X i = μ , 则 任 取 ε > 0 , 有 l i m n − > ∞ P ( ∣ 1 n Σ X i − μ ∣ ≥ ε ) = 0 设X_1,X_2,\cdots X_n是相互独立且同分布的随机变量,具有有限的数学期望,即EX_i=\mu,则任取\varepsilon>0,有lim_{n->\infty}P(|\frac{1}{n}\Sigma X_i - \mu|\geq\varepsilon) = 0 X1,X2,XnEXi=με>0limn>P(n1ΣXiμε)=0
5、Bernoulli大数定理
设 n A 表 示 n 重 伯 努 利 试 验 中 事 件 A 的 发 生 次 数 , p 是 事 件 A 在 一 次 试 验 中 发 生 地 概 率 , 即 P ( A ) = p , 则 任 取 ε > 0 , 有 l i m n − > ∞ P ( ∣ n A n − p ∣ ≥ ε ) = 0 设n_A表示n重伯努利试验中事件A的发生次数,p是事件A在一次试验中发生地概率,即P(A) = p,则任取\varepsilon>0,有lim_{n->\infty}P(|\frac{n_A}{n}-p|\geq\varepsilon) = 0 nAnApAP(A)=p,ε>0limn>P(nnApε)=0
6、独立同分布中心极限定理Lindeberg-Levy
设 X 1 , X 2 , ⋯ X n 是 相 互 独 立 且 同 分 布 的 随 机 变 量 , E X i = μ , D X i = σ 2 , 当 n 充 分 大 时 , Σ X i 近 似 服 从 以 它 的 均 值 为 均 值 , 它 的 方 差 为 方 差 的 正 态 分 布 , 即 N ( n μ , n σ 2 ) , 故 可 以 有 P ( a < Σ X i < b ) = ϕ ( b − n μ n σ ) − ϕ ( a − n μ n σ ) 设X_1,X_2,\cdots X_n是相互独立且同分布的随机变量,EX_i = \mu,DX_i = \sigma^2,当n充分大时,\Sigma X_i近似服从以它的均值为均值,它的方差为方差的正态分布,即N(n\mu,n\sigma^2),故可以有P(a<\Sigma X_i<b) = \phi(\frac{b-n\mu}{\sqrt{n}\sigma})-\phi(\frac{a-n\mu}{\sqrt{n}\sigma}) X1,X2,XnEXi=μDXi=σ2nΣXiN(nμ,nσ2)P(a<ΣXi<b)=ϕ(n σbnμ)ϕ(n σanμ)
7、Lyapunov中心极限定理
设 X 1 , X 2 , ⋯ X n 是 相 互 独 立 的 随 机 变 量 , E X i = μ i , D X i = σ i 2 , 当 n 充 分 大 时 , Σ X i 近 似 服 从 以 它 的 均 值 为 均 值 , 它 的 方 差 为 方 差 的 正 态 分 布 , 即 N ( Σ μ i , Σ σ i 2 ) , 故 可 以 有 P ( a < Σ X i < b ) = ϕ ( b − Σ μ i Σ σ i 2 ) − ϕ ( a − Σ μ i Σ σ i 2 ) ) 设X_1,X_2,\cdots X_n是相互独立的随机变量,EX_i = \mu_i,DX_i = \sigma_i^2,当n充分大时,\Sigma X_i近似服从以它的均值为均值,它的方差为方差的正态分布,即N(\Sigma \mu_i,\Sigma \sigma_i^2),故可以有P(a<\Sigma X_i<b) = \phi(\frac{b-\Sigma \mu_i}{\sqrt{\Sigma \sigma_i^2}})-\phi(\frac{a-\Sigma \mu_i}{\sqrt{\Sigma \sigma_i^2}})) X1,X2,XnEXi=μiDXi=σi2nΣXiN(Σμi,Σσi2)P(a<ΣXi<b)=ϕ(Σσi2 bΣμi)ϕ(Σσi2 aΣμi))
8、De Moivre-Laplace(狄莫弗-拉普拉斯)中心极限定理
若 X 服 从 B ( n , p ) , 当 n 充 分 大 时 , X 近 似 服 从 以 它 的 均 值 为 均 值 , 它 的 方 差 为 方 差 的 正 态 分 布 , 即 N ( n p , n p ( 1 − p ) ) , 故 可 以 有 P ( a < X < b ) = ϕ ( b − n p n p ( 1 − p ) ) − ϕ ( a − n p n p ( 1 − p ) ) ) 若X服从B(n,p),当n充分大时,X近似服从以它的均值为均值,它的方差为方差的正态分布,即N(np,np(1-p)),故可以有P(a<X<b) = \phi(\frac{b-np}{\sqrt{np(1-p)}})-\phi(\frac{a-np}{\sqrt{np(1-p)}})) XBnpnXN(np,np(1p))P(a<X<b)=ϕ(np(1p) bnp)ϕ(np(1p) anp))

  • 36
    点赞
  • 146
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 概率论与数理统计是一门涉及到很多概念和公式的学科,需要花费一定的时间和精力进行复习。以下是一些复习建议: 1. 温故知新:复习前需要回顾课本、笔记或者习题集中的重点内容,掌握概念、公式和方法。这可以帮助你更好地理解难点,并准确把握需要掌握的知识点。 2. 多练习题:练习题是巩固知识和提高技能的重要途径。通过多做一些典型的习题,可以更好地理解和掌握概率论和数理统计的知识点。 3. 理解思想方法:概率论和数理统计是建立在一些基本的思想方法上的。例如,概率的计算方法、假设检验的思想、回归分析的思路等等。理解这些方法的思想,有助于理解和记忆公式和结论。 4. 找到学习方法:学习方法因人而异。有的人适合记忆公式和结论,有的人则需要理解思想方法,才能更好地掌握概率论和数理统计。在复习中,需要找到适合自己的学习方法,提高学习效率。 5. 合理安排时间:概率论和数理统计的复习需要花费一定的时间和精力。在安排复习时间时,需要合理安排每天的学习任务和时间,并注意调整自己的学习状态和心态,以保证复习效果。 ### 回答2: 概率论与数理统计是一门重要的数学学科,需要系统地进行复习和巩固。 首先,复习时应该重点关注概率论和统计学的基本概念和原理。包括概率的定义、条件概率与独立性、贝叶斯公式等基本概率理论,以及离散和连续随机变量的概率分布、期望和方差等统计学基本概念。 其次,复习时需要熟悉概率论和统计学的相关公式和定理,并能够熟练运用。例如,二项分布、正态分布、泊松分布等常见的概率分布,以及大数定律、中心极限定理等重要的概率论和统计学定理。 此外,复习时还应该进行大量的习题和例题训练。通过解答各种类型的概率论和数理统计问题,可以加深对知识点的理解和掌握。可以选择一些经典的习题和例题,也可以通过参考教材上的习题集和相关的辅导资料进行练习。 最后,需要留出足够的时间进行综合复习和总结。将已学的知识进行归纳和总结,形成自己的复习笔记和思维导图,方便日后查阅。同时,还可以找一些相关的综合性试题进行模拟考试,检验自己的学习成果。 总之,概率论与数理统计的复习需要系统性和综合性。通过理论概念的复习、公式和定理的熟练应用、大量习题的训练以及综合性的总结和模拟考试,可以加深对概率论和数理统计的理解和掌握,为应对考试做好充分准备。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值