请问 e^π 和 π^e 哪个大?

首先两边个取对数,就等价与比较 [公式] 与eln [公式] 的大小
显然可以两边个除以e,就是比较 [公式] /e与ln [公式] 的大小估算一下,两个数都是比1大一点,试一试两边各减1,得到 [公式] /e-1与ln [公式] -1下面核心的来了,ln [公式] -1=ln [公式] -ln e =ln( [公式] /e)=ln(1+ [公式] /e -1)到这里,已经化成了比较 [公式] /e-1与ln(1+ [公式] /e-1)的大小。这里是不是一目了然了?x与ln(1+x)的大小,不管是对右边的泰勒展开还是这两个十分初等的函数图像都告诉我们左边的数要更大。于是就得出了e^ [公式] > [公式] ^e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值