首先两边个取对数,就等价与比较 [公式] 与eln [公式] 的大小
显然可以两边个除以e,就是比较 [公式] /e与ln [公式] 的大小估算一下,两个数都是比1大一点,试一试两边各减1,得到 [公式] /e-1与ln [公式] -1下面核心的来了,ln [公式] -1=ln [公式] -ln e =ln( [公式] /e)=ln(1+ [公式] /e -1)到这里,已经化成了比较 [公式] /e-1与ln(1+ [公式] /e-1)的大小。这里是不是一目了然了?x与ln(1+x)的大小,不管是对右边的泰勒展开还是这两个十分初等的函数图像都告诉我们左边的数要更大。于是就得出了e^ [公式] > [公式] ^e
请问 e^π 和 π^e 哪个大?
最新推荐文章于 2021-06-23 20:01:54 发布