ResNet残差网络Pytorch实现——BasicBlock残差块
上一篇:【BasicBlock残差块】 ✌✌✌✌ 【目录】 ✌✌✌✌ 下一篇:【Bottleneck残差块】
大学生一枚,最近在学习神经网络,写这篇文章只是记录自己的学习历程,本文参考了Github上fengdu78老师的文章进行学习
✌ BasicBlock
class BasicBlock(nn.Module):
# 一层中不同卷积层,卷积核的倍数
# 34层网络是64,64,50层网络是64,64,256
expansion=1
def __init__(self,in_channel,out_channel,stride=1,downsample=None):
super(BasicBlock,self).__init__()
self.conv1=nn.Conv2d(in_channels=in_channel,out_channels=out_channel,
kernel_size=3,stride=stride,padding=1,bias=False)
self.bn1=nn.BatchNorm2d(out_channel)
self.conv2=nn.Conv2d(in_channels=out_channel,out_channels=out_channel,
kernel_size=3,stride=1,padding=1,bias=False)
self.bn2=nn.BatchNorm2d(out_channel)
self.relu=nn.ReLU(inplace=True)
self.downsample=downsample
def forward(self,x):
'''定义下采样变量,就是那条捷径,为了使初始值与卷积后的值进行相加,
如果该层是50、101的残差1的第一层或是所有网络残差层的第一个卷积层,都要走捷径,
因为输入和输出不匹配,所以要走捷径将卷积核层数扩大,
或者将数据维度降低达到目标可以相加的维度
'''
identity=x
if self.downsample is not None:
identity=self.downsample(x)
out=self.conv1(x)
out=self.bn1(out)
out=self.relu(out)
out=self.conv2(out)
out=self.bn2(out)
out+=identity
out=self.relu(out)
return out