ResNet残差网络Pytorch实现——BasicBlock残差块

ResNet残差网络Pytorch实现——BasicBlock残差块


上一篇:【BasicBlock残差块】 ✌✌✌✌ 【目录】 ✌✌✌✌ 下一篇:【Bottleneck残差块】


大学生一枚,最近在学习神经网络,写这篇文章只是记录自己的学习历程,本文参考了Github上fengdu78老师的文章进行学习


✌ BasicBlock

class BasicBlock(nn.Module):
    # 一层中不同卷积层,卷积核的倍数
    # 34层网络是64,64,50层网络是64,64,256
    expansion=1
    
    def __init__(self,in_channel,out_channel,stride=1,downsample=None):
        super(BasicBlock,self).__init__()
        
        self.conv1=nn.Conv2d(in_channels=in_channel,out_channels=out_channel,
                             kernel_size=3,stride=stride,padding=1,bias=False)
        self.bn1=nn.BatchNorm2d(out_channel)
        
        self.conv2=nn.Conv2d(in_channels=out_channel,out_channels=out_channel,
                             kernel_size=3,stride=1,padding=1,bias=False)
        self.bn2=nn.BatchNorm2d(out_channel)
        
        self.relu=nn.ReLU(inplace=True)
        
        self.downsample=downsample
        
    def forward(self,x):
        '''定义下采样变量,就是那条捷径,为了使初始值与卷积后的值进行相加,
        如果该层是50、101的残差1的第一层或是所有网络残差层的第一个卷积层,都要走捷径,
        因为输入和输出不匹配,所以要走捷径将卷积核层数扩大,
        或者将数据维度降低达到目标可以相加的维度
        '''
        identity=x
        if self.downsample is not None:
            identity=self.downsample(x)
        
        out=self.conv1(x)
        out=self.bn1(out)
        out=self.relu(out)
        
        out=self.conv2(out)
        out=self.bn2(out)
        
        out+=identity
        out=self.relu(out)
        
        return out
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值