pytorch使用TensorBoard可视化损失函数曲线、精度信息

该博客介绍了如何在PyTorch中利用TensorBoard进行模型训练的可视化。通过定义一个SummaryWriter,将训练和验证过程中的损失及准确率等信息记录,然后在命令行启动TensorBoard进行展示。示例中展示了使用LeNet模型训练MNIST数据集的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在训练神经网络时,我们希望能够直观地训练情况,例如损失函数的曲线输入的图像模型精度等信息,这些信息可以帮助我们更好地监督网络的训练过程,并为参数优化提供方向和依据。

其实我们可以有个更容易地实现方式就是定义一个列表,然后将每个epoch的训练结果添加到列表中,待模型训练完成之后,使用这个列表中的数据进行可视化以及绘图操作等。

本文提供一个更为专业的操作,它是一个常用的可视化工具:TensorBoard

PyTorch已经内置了TensorBoard的相关接口,用户在安装后便可调用相关接口进行数据可视化

在这里插入图片描述
下面我将使用LeNet训练MNIST为例,来讲解tensorboard如何使用。

加载数据

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms as T
from tqdm import tqdm

data_transform = T.Compose([
        T.RandomResizedCrop(32),
        T.ToTensor(),
])

train_dataset = torchvision.datasets.MNIST('./', train=True, transform=data_transform)
val_dataset = torchvision.datasets.MNIST('./', train=False, transform=data_transform)

train_loader = torch.utils.data.DataLoader(train_dataset, 32)
val_loader = torch.utils.data.DataLoader(val_dataset, 32)

定义网络

class LeNet5(nn.Module):
    def __init__(self,num_class=10):
        super(LeNet5,self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool1 = nn.AvgPool2d((2, 2))
        
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.pool2 = nn.AvgPool2d((2, 2))
        
        self.conv3 = nn.Conv2d(16, 120, 5)
        
        self.relu = nn.ReLU()

        self.fc1 = nn.Linear(120, 84)
        self.fc2 = nn.Linear(84, num_class)
        
    def forward(self, x):
        # x: torch.Size([1, 3, 32, 32])
        
        x = self.conv1(x) # torch.Size([1, 6, 28, 28])
        x = self.relu(x)
        x = self.pool1(x) # torch.Size([1, 6, 14, 14])

        x = self.conv2(x) # torch.Size([1, 16, 10, 10])
        x = self.relu(x)
        x = self.pool2(x) # torch.Size([1, 16, 5, 5])

        x = self.conv3(x) # torch.Size([1, 120, 1, 1])
        x = self.relu(x)
        
        x = x.flatten(start_dim=1) # torch.Size([1, 120])
        
        x = self.fc1(x) # torch.Size([1, 84])
        x = self.relu(x)
        x = self.fc2(x) # torch.Size([1, 5])

        return x

定义模型等组件

model = LeNet5(10)
loss_function = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), 0.003)

# 日志信息保存路径
logger = SummaryWriter(log_dir='./log')

模型训练

for epoch in range(50):
    train_accuracy = 0
    train_loss = 0
    val_accuracy = 0
    val_loss = 0
    epoch_acc_count = 0
    count = 0
    running_loss = 0
    
    model.train()
    for data in tqdm(train_loader):
        images, labels = data
        optimizer.zero_grad()
        output = model(images)
        loss = loss_function(output, labels)
        loss.backward()
        optimizer.step()
        
        running_loss += loss.item()

        # 计算每个epoch正确的个数
        epoch_acc_count += (output.argmax(axis=1) == labels.view(-1)).sum()
        count += len(images)
    
    # 写入日志信息
    logger.add_scalar('train_loss', running_loss, epoch + 1)
    logger.add_scalar('train_accuracy', epoch_acc_count / count, epoch + 1)
    
    running_loss = 0
    epoch_acc_count = 0
    count = 0
    
    model.eval()
    for data in tqdm(val_loader):
        images, labels = data
        optimizer.zero_grad()
        output = model(images)
        loss = loss_function(output, labels)
        loss.backward()
        optimizer.step()
        
        running_loss += loss.item()

        # 计算每个epoch正确的个数
        epoch_acc_count += (output.argmax(axis=1) == labels.view(-1)).sum()
        count += len(images)
    
    logger.add_scalar('val_loss', running_loss, epoch + 1)
    logger.add_scalar('val_accuracy', epoch_acc_count / count, epoch + 1)

命令启动TensorBoard

通过下面的命令行参数即可启动tensorboard,log_path就是我们模型训练时日志保存的路径。

tensorboard --logdir=log_path
### 提高Alist通过百度网盘API下载文件的速度 为了提高Alist通过百度网盘API下载文件的速度,可以从多个方面进行优化: #### 1. 使用加速服务 一些第三方服务商提供百度网盘的加速功能。这些服务通常会缓存热门资源并提供更快的下载通道。可以通过集成这类服务来提升下载速度。 #### 2. 配置多线程下载工具 利用支持断点续传和多线程特性的下载器如 `aria2` 或者 `qBittorrent` 可以显著加快大文件的传输效率。确保已按照官方指南完成相应软件的安装与配置[^1]。 对于 Windows 用户: ```powershell choco install aria2 ``` 对于 macOS 用户: ```bash brew install aria2 ``` 对于 Linux 用户(Debian/Ubuntu): ```bash sudo apt-get update && sudo apt-get install -y aria2 ``` #### 3. 调整 Aria2 参数设置 适当调整 `aria2.conf` 文件中的参数可以帮助改善性能表现。如增加最大并发数、启用磁盘缓存等功能均有助于提速。 ```ini # 设置单个任务的最大连接数 max-concurrent-downloads=5 # 启用本地节点查找 (DHT),这可能帮助找到更多的种子源 enable-dht=true # 开启 BT 种子监听端口,默认是随机分配的一个端口号 listen-port=6881-6999 # 设定文件分片大小为 1MB file-allocation=falloc # 缓存大小设为 25MiB disk-cache=25M ``` #### 4. 利用 CDN 加速 如果目标文件位于 `/apps/bypy` 目录下,则可以直接访问该路径下的公开链接而无需经过 API 请求过程,从而减少延迟时间[^2]。不过需要注意的是这种方法仅适用于特定条件下的文件共享场景。 #### 5. 更新至最新版本 保持使用的应用程序及其依赖库处于最新的稳定状态非常重要。开发者们经常会修复 bug 并引入新的特性来增强系统的整体效能。定期检查是否有可用更新,并及时应用它们。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值