PyTorch中LazyLinear惰性模块初始化

本文介绍了PyTorch中的LazyLinear模块,该模块允许延迟初始化线性层的输入维度,仅需指定输出维度。通过示例代码展示了如何使用惰性模块,解释了其工作原理,即在模型首次运行时根据输入动态计算并初始化权重。这种惰性初始化方法简化了模型构建,尤其是在处理卷积层和线性层连接时,无需预先计算卷积层的输出维度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在PyTroch中存在一个惰性模块 LazyLinear ,这个模块的作用就是可以帮助我们实现惰性初始化参数,不必在定义线性层的时候同时指定输入维度和输出维度,只需要指定输出维度即可,对于输入维度采用自动推断的方式。

PyTorch中LazyLinear模块定义:

在这里插入图片描述

上图为PyTorch中给出的 LazyLinear 定义,其实功能和 nn.Linear 的作用一样,唯独区别就是在定义模块时不需要指定输入维度,采用自动推断方式,下面给出示例代码:

惰性模块:

x = torch.randn(32, 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值