改进的softmax损失函数有哪些?

本文介绍了Softmax函数及其在多分类问题中的应用,包括其数学定义、特点和用途。接着讨论了改进的Softmax损失函数,如Focal Loss、Label Smoothing Loss和Lovász-Softmax Loss,它们分别针对类别不平衡、过拟合和不完全标注数据等问题提供解决方案,以提升模型性能和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

一、Softmax

Softmax函数是一种常用的激活函数,通常用于多分类问题中,将一组实数映射到一个介于0和1之间的概率分布上。它可以将多个神经元的输出转化为各类别的概率分布,使得这些概率之和等于1。Softmax函数常用于神经网络的输出层,以产生多类别分类的预测。

在这里插入图片描述

Softmax函数的数学公式如下:
softmax ( x i ) =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值