一、特点
卷积神经网络(CNN)是一种在深度学习领域中非常成功的神经网络架构,专门用于处理具有网格结构数据(如图像和语音)的任务。CNN具有许多特点,使其在图像处理、计算机视觉和其他领域取得了出色的表现。以下是CNN的一些主要特点:
-
局部感受野: CNN利用局部感受野的思想,通过卷积操作从图像中提取特征。每个卷积核仅与输入图像中的一小块区域进行卷积,从而捕获局部特征。这使得CNN能够有效地处理图像中的局部结构。
-
参数共享: CNN中的卷积核在整个图像中共享参数。这意味着不同位置的特征可以使用相同的卷积核来提取,减少了模型参数的数量,使得模型更加轻量级。
-
空间层次结构: CNN通过多层卷积和池化操作构建了逐渐抽象的特征表示。底层层次捕获图像