【数据分析案例】(四)基于决策树的银行客户流失二分类任务

本文是《机器学习项目实战100例》的一部分,探讨了银行客户流失的二分类问题。通过Kaggle竞赛数据集,利用决策树算法预测客户是否离开银行,旨在帮助金融机构降低客户流失率。数据集包含客户信用评分、地理位置、性别、年龄等信息,通过pandas、matplotlib、seaborn等库进行数据处理和可视化,最终训练并评估了决策树模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥 项目专栏:【机器学习项目实战100例】


前言

大家好,我是阿光。

本专栏整理了《机器学习项目实战100例》,这个专栏涵盖了多种类型的数据挖掘项目,以满足不同用户的各种需求,为大家提供支持,助力完成各类课程设计。内包含项目原理以及源码,每一个项目实例都附带有完整的代码 + 数据集。

正在更新中~ ✨
在这里插入图片描述

🌳 我的项目环境:

  • 平台:Windows10
  • 语言环境:python 3.7
  • 编译器:Jupyter Notebook
  • sklearn 版本:1.0.2
  • pandas 版本:1.3.5
  • numpy 版本:1.19.3
  • scipy 版本:1.7.3

在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值