基于自注意力机制的长短期记忆神经网络(LSTM-SelfAttention)的回归预测

本文介绍了如何在MATLABR2023a及以上版本中使用LSTM-SelfAttention模型进行时序数据预测,该模型结合了LSTM的长期依赖处理能力和自注意力机制的局部聚焦特性,以提高预测准确性。通过实例展示了模型结构和在股票价格预测等任务中的应用。
摘要由CSDN通过智能技术生成

提示:MATLAB版本需要R2023a以上
基于自注意力机制的长短期记忆神经网络(LSTM-SelfAttention)是一种用于时序数据预测的模型。这个模型结合了两个不同的结构,即长短期记忆网络(LSTM)和自注意力机制,从而在时序数据预测中发挥各自的优势。

1. 长短期记忆网络(LSTM)
长短期记忆网络(LSTM)是一种循环神经网络(RNN),它旨在解决传统RNN在处理长序列数据时存在的“遗忘问题”。LSTM通过引入记忆细胞和多个门控单元(输入门、遗忘门、输出门),可以更好地控制信息的流动和保持状态的持久性。

LSTM在时序数据预测中表现出色,因为它可以捕捉到数据中的长期依赖关系。例如,在股票价格预测、气象预测、销售数据预测等任务中,LSTM可以利用历史数据中的模式来预测未来。

2. 自注意力机制
自注意力机制是一个用于捕捉输入序列中不同部分之间关系的技术。它通过计算每个元素与其他元素之间的注意力权重,来确定哪些部分在给定任务中更为重要。这种机制使模型能够专注于输入序列中最相关的信息。

自注意力机制在时序数据预测中有助于更好地理解输入数据的依赖关系和模式。例如,某些数据点可能对预测未来值更为关键,而其他数据点则可能相对不太重要。自注意力机制可以帮助模型自动地识别这些重要数据点。

3. LSTM-SelfAttention
将LSTM和自注意力机制结合起来的模型通常被称为LSTM-SelfAttention。这个模型的结构一般如下:

输入层:接受时序数据作为输入。
LSTM层:处理输入数据,并生成每个时间步的输出。
自注意力层:在LSTM层之后,引入自注意力机制,以关注时序数据中的不同部分。
全连接层:将自注意力层的输出传递到全连接层,进行预测。
输出层:生成最终的预测结果。
LSTM-SelfAttention模型的优势在于它既能捕捉到时序数据中的长期依赖关系(通过LSTM),又能关注输入数据中的关键部分(通过自注意力机制)。这使得模型在时序数据预测任务中表现更好。

总结
基于自注意力机制的长短期记忆神经网络(LSTM-SelfAttention)是一种强大的时序数据预测模型。它结合了LSTM和自注意力机制的优势,可以有效地处理时序数据中的长期依赖关系和关键部分。通过这种组合,模型在预测任务中可以表现出更高的准确性和稳定性。
部分源代码:

%%  清空环境变量
clc;
clear;
close all;
warning off;
tic
%%  导入数据
load testdata.mat;
%%  数据分析
[trainInd,valInd,testInd] = dividerand(size(X,2),0.7,0,0.3);	%划分训练集与测试集
P_train = X(:,trainInd);	%列索引
T_train = Y(:,trainInd);
P_test = X(:,testInd);
T_test = Y(:,testInd);
M = size(P_train, 2);
N = size(P_test, 2);
L = size(P_train, 1);

lstmnumber = 100;
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%将数据平铺成1维数据只是一种处理方式
%也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, L, 1, 1, M));
p_test  =  double(reshape(p_test , L, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';

训练图:
在这里插入图片描述
效果图:
在这里插入图片描述
误差分析:
在这里插入图片描述
完整源代码和数据:LSTM-SelfAttention完整代码(https://mbd.pub/o/bread/ZpWVlJZp)

  • 13
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
实现attention-lstm注意力机制长短期记忆神经网络)多输入单输出需要以下步骤: 1. 数据预处理:准备多个输入序列和对应的输出序列。每个输入序列和输出序列由时间步长组成,每个时间步长包含特征向量。确保所有输入序列和输出序列有相同的时间步长。 2. 构建注意力层:注意力机制用于给输入序列的各个时间步长分配不同的权重。可以使用注意力机制的各种变体,如双向注意力机制、多头注意力机制等。通过计算每个时间步长的注意力权重,得到每个输入序列的注意力加权向量。 3. 构建LSTM层:将每个输入序列的注意力加权向量输入到LSTM长短期记忆)层中。LSTM层用于捕捉序列数据中的长期依赖关系。 4. 单输出层:将所有LSTM层的输出连接到一个全连接层,用于生成最终的输出结果。可以根据具体问题的需求选择合适的激活函数,如sigmoid函数用于二分类问题,softmax函数用于多分类问题。 5. 训练和优化:使用适当的损失函数和优化算法对模型进行训练。常用的损失函数包括平均绝对误差(MAE)、均方误差(MSE)等。常用的优化算法包括随机梯度下降(SGD)、Adam等。 6. 预测和评估:使用训练好的模型对新的输入序列进行预测,并评估模型的性能。评估指标可以根据具体问题选择,如准确率、召回率、F1值等。 总之,实现attention-lstm多输入单输出需要构建注意力层、LSTM层和单输出层,并进行训练和优化。该模型适用于处理具有时间序列特征的多输入单输出问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沅_Yuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值