【目标检测】------yolov1-yolov5改进总结

本文详细介绍了YOLO目标检测系列的发展,从yolov1的基础结构,到yolov2引入的BN、anchor boxes等改进,再到yolov3的多尺度预测和CSP结构,然后是yolov4的CSPDarknet53、SPP模块等优化,最后讨论了yolov5的Focus结构和更深的网络。文章通过对比分析,揭示了每一版YOLO在速度与精度上的提升及其背后的创新之处。
摘要由CSDN通过智能技术生成

YOLO系列总结

1. yolov1

在这里插入图片描述
yolov1框架讲解
1.将image划分为77个网格,每个网格预测2个bbox的位置(X、y、W、h)、置信度( confidence为交并比)、 类别概率;
2.输出维度为7
7*(25+20 );
3.测试时,将条件类概率和预测框的置信度乘起来,表示每个box包含某类物体的置信度,这个分数可以将box中的类别可能性和预测精确度同时表示出来
4.基本网络模型为GoogLe Net ,但未使用它的inception模块,而是交替使用1
1和33卷积层
5.预训练分类网络,输入图像大小为224
224
6.目标检测网络,输入图像大小为448*448
7.损失函数(平方和损失函数)包括4部分:框中心位置x,y损失+框宽高w,h损失+置信度confidence分类损失

YOLO V1优点
<1>速度快
<2>对图像有全局理解。用整个图像的特征去预测bbox
<3>候选框的数量少很多,仅772=98个
<4>每个网格只预测2个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小飞龙程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值