深度学习------pytorch实现cifar10数据集

该博客详细介绍了如何使用PyTorch库在CIFAR10数据集上训练VGG16模型。通过训练集训练模型,并利用测试集评估模型性能。
摘要由CSDN通过智能技术生成

本博客主要以cifar10为数据集,采用vgg16对模型进行训练,通过训练集训练处模型,用测试集去验证训练集的模型的好坏。

pytorch实现cifar10数据集

from torch.autograd import Variable
from torchsummary import summary
from torchvision.models import resnet34,vgg16,densenet
from torchvision.transforms import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小飞龙程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值