机器学习------神经网络中sigmoid、tanh、relu激活函数

本文介绍了神经网络中常见的三种激活函数:Sigmoid、Tanh和ReLU。Sigmoid函数适用于二分类,但存在梯度消失问题;Tanh函数输出以0为中心,收敛速度比Sigmoid快;ReLU函数则能有效缓解梯度消失,提高训练速度,但在训练中可能出现神经元死亡现象。
摘要由CSDN通过智能技术生成

在神经网络中,我们会对所有的输入进行加权求和,之后我们会在对结果施加一个函数,这个函数就是我们所说的激活函数。如下图所示。
在这里插入图片描述
对于神经网络,一版我们会使用三种激活函数:Sigmoid函数、Tanh函数、ReLU函数。

1. sigmoid函数

sigmoid函数也叫Logistic函数,用于隐层神经元输出,取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。在特征相差比较复杂或是相差不是特别大时效果比较好。Sigmoid作为激活函数有以下优缺点
优点:
<1> Sigmoid的取值范围在(0, 1),而且是单调递增,比较容易优化
<2> Sigmoid求导比较容易,可以直接推导得出。
缺点:
<1> Sigmoid函数收敛比较缓慢
<2> 由于Sigmoid是软饱和,容易产生梯度消失,对于深度网络训练不太适合(从图上sigmoid的导数可以看出当x趋于无穷大的时候,也会使导数趋于0)
<3> Sigmoid函数并不是以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小飞龙程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值