signal.find_peaks寻峰原理

本文详细解释了scipy.signal.find_peaks函数在寻找信号中的峰值时如何识别局部极大值点,包括高度、距离和宽度阈值的设定,以及平台和边缘处理策略。通过实例展示了如何在Python中使用该函数并可视化结果。
摘要由CSDN通过智能技术生成

signal.find_peaks寻峰原理

scipy.signal.find_peaks 是 SciPy 库中用于寻找信号峰值的函数。它的基本原理是识别局部极大值点,这些点的特征是在一定范围内比相邻的样本都要高。

以下是 find_peaks 函数的工作原理的简要概述:

  1. 局部极大值: find_peaks 会遍历数据点,寻找满足局部极大值条件的点。一个数据点如果比它左右两边的点都要高,那么它就被认为是一个局部极大值。

  2. 高度阈值: 可以设置一个最小高度阈值(height 参数),只有高于这个阈值的峰才会被检测到。

  3. 距离阈值: 可以设置峰与峰之间的最小水平距离(distance 参数),这样可以避免检测到非常接近的多个峰。

  4. 宽度阈值: 还可以设置峰的最小宽度(width 参数),这样可以过滤掉那些比较尖锐的峰。

  5. 平台处理: 如果信号中存在平台(即一系列具有相同值的连续点),find_peaks 可以通过 plateau_size 参数来处理这种情况。

  6. 边缘处理: 默认情况下,find_peaks 不会在信号的边缘寻找峰值,因为边缘点没有足够的邻居来确定它们是否是局部极大值。但是,可以通过设置 edge 参数来改变这种行为。

  7. 峰的属性: find_peaks 还可以返回峰的属性,如高度、宽度和峰顶的位置等。

下面是一个简单的使用 find_peaks 函数的例子

from scipy.signal import find_peaks
import numpy as np

# 创建一个简单的信号
x = np.array([0, 1, 2, 1, 0, 1, 2, 1, 0])

# 寻找峰值
peaks_id, _ = find_peaks(x)
print("峰值的索引:", peaks_id)

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文
plt.rcParams['axes.unicode_minus'] = False  # 显示负号
font = {'family': 'Times New Roman', 'size': '20', 'color': '0.5', 'weight': 'bold'}
plt.figure(figsize=(12,4))
length = len(x)
fs = 10
t = np.arange(0, length/fs, 1/fs)
plt.plot(t, x, c='b', zorder=1)
plt.scatter(t[peaks_id], x[peaks_id], marker='o', c='r', zorder=2)
plt.show()
## 输出结果
峰值的索引: [2 6]

在这里插入图片描述

find_peaks函数是scipy库中的一个信号处理函数,用于寻找数组中的峰值。它可以帮助我们找到波峰或波谷的位置,并提供一些有用的属性信息。在给定的例子中,使用了find_peaks函数来找到给定数组中的峰值。 在示例代码中,首先导入了find_peaks函数,然后创建了一个数组x。接下来,使用find_peaks(x, prominence=0)来寻找数组x中的峰值,并将结果存储在peaks和properties两个变量中。最后,打印出peaks和properties的值,分别表示找到的峰值的位置和属性信息。 关于prominence参数,它是用来控制峰值的突出程度的阈值。如果设置为0,则所有的峰值都会被找到。如果设置为较大的值,则只有突出程度超过该阈值的峰值才会被找到。 在另一个例子中,使用find_peaks函数来寻找心电图信号中的峰值。在这个例子中,先导入了matplotlib.pyplot和numpy库,然后使用electrocardiogram()函数生成了一个心电图信号,再从该信号中截取了一段作为输入数组x。接着调用find_peaks(x, prominence=1, width=20)来寻找x中的峰值,同时指定了prominence和width参数来限制峰值的突出程度和宽度。最后,使用matplotlib库来绘制出心电图和找到的峰值,并展示出来。 总结来说,find_peaks函数是一个用于寻找数组中峰值的函数,可以根据需要设置突出程度和宽度的阈值来筛选峰值。它在信号处理和数据分析中有广泛的应用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [python中峰值识别算法find_peak原理介绍](https://blog.csdn.net/qq_43251445/article/details/130125713)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [scipy.signal.find_peaks(峰值检测)](https://blog.csdn.net/chehec2010/article/details/117336967)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

故障诊断与python学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值