动态规划(三)& 代码实战篇

动态规划(三)& 代码实战篇


动态规划算法题1

斐波那契数列是一个每一项都是前两项和的数列,定义为:F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2) 对于所有 n > 1。

下面是使用动态规划解决斐波那契数列的Python代码:

def fibonacci(n):
    # 创建一个数组来存储斐波那契数列的值
    dp = [0] * (n+1)
    
    # 初始化前两个数
    dp[0] = 0
    dp[1] = 1
    
    # 使用动态规划填充数组
    for i in range(2, n+1):
        dp[i] = dp[i-1] + dp[i-2]
    
    # 返回第n项的值
    return dp[n]

# 测试代码
n = 10  # 计算第10项斐波那契数
print(f"The {n}th Fibonacci number is: {fibonacci(n)}")

这段代码首先定义了一个函数fibonacci,它接受一个整数n作为参数,表示要计算的斐波那契数列的项数。然后,它使用一个列表dp来存储已经计算出的斐波那契数,避免了重复计算。通过迭代的方式,它填充了这个列表,最终返回了第n项的值。

动态规划算法题2

背包问题(Knapsack Problem)。这是一个经典的优化问题,其中你有一个背包,它有一个最大承重限制,同时你有一系列物品,每个物品都有其自己的重量和价值。目标是选择物品的子集,使得背包内的总价值最大,同时不超过背包的承重限制。

这里我们使用动态规划来解决0/1背包问题,即每个物品要么完全被选中,要么完全不被选中。

以下是使用Python编写的0/1背包问题的动态规划代码:

def knapsack(weights, values, capacity):
    num_items = len(weights)
    # 创建一个二维数组dp,dp[i][j]表示在前i个物品中选择,且背包容量为j时能获得的最大价值
    dp = [[0 for _ in range(capacity + 1)] for _ in range(num_items + 1)]

    # 动态规划填表
    for i in range(1, num_items + 1):
        for j in range(1, capacity + 1):
            # 如果当前物品的重量小于等于背包容量
            if weights[i - 1] <= j:
                # 选择当前物品和不选择当前物品的最大价值
                dp[i][j] = max(dp[i - 1][j],  # 不选择当前物品
                               values[i - 1] + dp[i - 1][j - weights[i - 1]])  # 选择当前物品
            else:
                # 如果当前物品的重量大于背包容量,不能选择它
                dp[i][j] = dp[i - 1][j]

    # 返回背包能获得的最大价值
    return dp[num_items][capacity]

# 测试代码
weights = [2, 3, 4, 5]  # 物品的重量
values = [3, 4, 5, 6]   # 物品的价值
capacity = 5            # 背包的容量

print(f"The maximum value is: {knapsack(weights, values, capacity)}")

这段代码定义了一个函数knapsack,它接受三个参数:weights(物品的重量列表),values(物品的价值列表),以及capacity(背包的容量)。然后,它创建了一个二维数组dp来存储在不同情况下背包能获得的最大价值。通过迭代填充这个数组,最终返回了背包能获得的最大价值。

请注意,这个背包问题是一个0/1背包问题,每个物品只能选择一次。如果物品可以重复选择,或者有部分选择的情况,问题将变得更加复杂。

动态规划算法题3

王强决定把年终奖用于购物,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件附件
电脑打印机,扫描仪
书柜图书
书桌台灯,文具
工作椅

如果要买归类为附件的物品,必须先买该附件所属的主件,且每件物品只能购买一次。

每个主件可以有 0 个、 1 个或 2 个附件。附件不再有从属于自己的附件。

王强查到了每件物品的价格(都是 10 元的整数倍),而他只有 N 元的预算。除此之外,他给每件物品规定了一个重要度,用整数 1 ~ 5 表示。他希望在花费不超过 N 元的前提下,使自己的满意度达到最大。

满意度是指所购买的每件物品的价格与重要度的乘积的总和,假设设第ii件物品的价格为v[i]v[i],重要度为w[i]w[i],共选中了k件物品,编号依次为j1,j2,…,jkj1,j2,…,j**k,则满意度为:v[j1]∗w[j1]+v[j2]∗w[j2]+…+v[jk]∗w[jk]v[j1]∗w[j1]+v[j2]∗w[j2]+…+v[j**k]∗w[j**k]。(其中 * 为乘号)

请你帮助王强计算可获得的最大的满意度。

输入描述:

输入的第 1 行,为两个正整数N,m,用一个空格隔开:

(其中 N ( N<32000 )表示总钱数, m (m <60 )为可购买的物品的个数。)

从第 2 行到第 m+1 行,第 j 行给出了编号为 j-1 的物品的基本数据,每行有 3 个非负整数 v p q

(其中 v 表示该物品的价格( v<10000 ), p 表示该物品的重要度( 1 ~ 5 ), q 表示该物品是主件还是附件。如果 q=0 ,表示该物品为主件,如果 q>0 ,表示该物品为附件, q 是所属主件的编号)

输出描述:

输出一个正整数,为张强可以获得的最大的满意度。


实例:

输入:
50 5
20 3 5
20 3 5
10 3 0
10 2 0
10 1 0
输出:130
说明:
由第1行可知总钱数N为50以及希望购买的物品个数m为5;
第2和第3行的q为5,说明它们都是编号为5的物品的附件;
第4~6行的q都为0,说明它们都是主件,它们的编号依次为3~5;
所以物品的价格与重要度乘积的总和的最大值为10*1+20*3+20*3=130   
n, m = map(int,input().split())  #给每个输入值强制转换为int型
primary, annex = {}, {}
for i in range(1,m+1):  #存当前输入的数据
    x, y, z = map(int, input().split())
    if z==0:#表示当前输入的数据q是个主件
        primary[i] = [x, y]
    else:#表示当前输入的数据q是个附件
        if z in annex:#第二个附件
            annex[z].append([x, y])
        else:#第一个附件
            annex[z] = [[x,y]]
m = len(primary)#主件个数转化为可以放进背包的物品个数
dp = [[0]*(n+1) for _ in range(m+1)]#开辟背包空间:m(行) * n(列)
w, v= [[]], [[]]
for key in primary:  #将当前存好的数据放到w,v两个二维列表中
    w_temp, v_temp = [], []
    w_temp.append(primary[key][0])#当前往背包里放的物品的主件不带附件
    v_temp.append(primary[key][0]*primary[key][1])
    if key in annex:#当前往背包里放的物品的主件存在附件
        w_temp.append(w_temp[0]+annex[key][0][0])#只带附件1进背包
        v_temp.append(v_temp[0]+annex[key][0][0]*annex[key][0][1])
        if len(annex[key])>1:#当前往背包里放的物品的主件存在两种附件
            w_temp.append(w_temp[0]+annex[key][1][0])#只带附件2进背包
            v_temp.append(v_temp[0]+annex[key][1][0]*annex[key][1][1])
            w_temp.append(w_temp[0]+annex[key][0][0]+annex[key][1][0])#既带附件1又带附件2进背包
            v_temp.append(v_temp[0]+annex[key][0][0]*annex[key][0][1]+annex[key][1][0]*annex[key][1][1])
    w.append(w_temp)
    v.append(v_temp)
for i in range(1,m+1):
    for j in range(10,n+1,10):#物品的价格是10的整数倍,步长设为10,动态规划,缩小数据v的数量级
        max_i = dp[i-1][j]
        for k in range(len(w[i])):
            if j-w[i][k]>=0:
                max_i = max(max_i, dp[i-1][j-w[i][k]]+v[i][k]) #0-1背包拓展,递归
        dp[i][j] = max_i #中间变量归位,供下一趟循环时使用
print(dp[m][n])   #递归调用dp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值