动态规划的matlab代码,随机动态规划,matlab 代码, c 代码

与一般的动态规划相比,随机动态规划是指 下一阶段的状态是不确定的,每个状态有一定的概率。因此,在计算递推公式时,需要取期望。

确定的动态规划的递推公式:

0818b9ca8b590ca3270a3433284dd417.png

而随机的动态规划的递推公式为:

0818b9ca8b590ca3270a3433284dd417.png

其中, p_{k} 表示随机变量取值 的概率, 在随机动态规划中,每一个决策 x_{i} 对应多个 S_{i+1}。

举例,库存管理问题:

3个阶段,初始库存为1,每个阶段的需求随机,需求量以均匀分区在 1 与2 两个数之间取值;最大生产量为4,不能缺货及延迟补货。成本包括:

库存持有成本,生产启动成本,可变生产成本。在第3阶段期末时,可以出售残值。单位残值价值2。其中,单位库存成本为1,生产成本的表达式如下:

0818b9ca8b590ca3270a3433284dd417.png

上式中,3 表示生产启动成本,2 表示单位可变生产成本。

因此递推公式为:

0818b9ca8b590ca3270a3433284dd417.png

f(S_{i}) 表示当第 i 阶段初始库存为 S_{i} 时,i, i+1, ..,3 阶段的最小期望总成本。

逆推的 matlab 代码为:

function sdp

T=3;

state=4;

d=[1,2];

prod_cost1=0;

prod_cost2=@(x)3+2*x;

hold_cost=@(i,x)0.5*(i+x-d(1))+0.5*(i+x-d(2));

salv_cost1=0;

salv_cost2=@(i,x)0.5*(i+x-d(1))+0.5*(i+x-d(1));

xx=zeros(T,state);%记录每个阶段每个状态的最优决策

M=100;

CC=M*ones(T,state);%记录每个阶段每个状态的累计最优成本

for t=T:-1:1

for temp_i=1:state

i=temp_i-1;

if t==1

i=1;

end

minc=M;

for x=2-i:4-i

if t==3

salv_cost=salv_cost2(i,x);CC_next=0;

else

salv_cost=salv_cost1;CC_next=0.5*CC(t+1,i+x-d(1)+1)+0.5*CC(t+1,i+x-d(2)+1);

end

if x==0

prod_cost=prod_cost1;

else

prod_cost=prod_cost2(x);

end

temp_c=prod_cost+hold_cost(i,x)-salv_cost+CC_next;

if temp_c

minc=temp_c;CC(t,i+1)=minc; xx(t,i+1)=x;

end

end

if t==1

break;

end

end

end

[eOptimalCost,index]=min(CC(1,:));

fprintf('optimal expected total cost=%.4f\n',eOptimalCost);

fprintf('optimal production amount in period 1 =%d\n',xx(1,index));

end

随机规划是一种优化方法,它涉及在某些参数不确定的情况下进行决策。在这些情况下,参数的不确定性通常通过随机变量来建模,而优化问题的目的是找到在所有可能的随机参数实现下表现良好的解。在Matlab中实现随机规划,可以使用一些内置函数和工具箱,比如随机模拟和概率分布函数,以及优化工具箱。 以下是一个简单的随机规划问题的Matlab代码示例,它涉及一个随机参数,并使用线性规划求解: ```matlab function [x, fval] = stochastic_linear_program() % 随机变量,这里用正态分布作为例子 mu = 0; % 均值 sigma = 1; % 标准差 num_scenarios = 1000; % 随机情景的数量 scenarios = normrnd(mu, sigma, num_scenarios, 1); % 生成随机情景 % 确定线性规划的参数 A = [-1, 1; 1, 2; 3, 1]; % 约束矩阵 b = [2; 2; 3]; % 约束右端值 f = [1; 1]; % 目标函数系数 % 随机线性规划的期望值模型 num_vars = length(f); c = zeros(num_scenarios, num_vars); % 所有情景下的目标函数系数 for i = 1:num_scenarios c(i, :) = f; % 假设目标函数系数对所有情景相同 end % 期望值优化问题 options = optimoptions('linprog','Algorithm','dual-simplex'); x = zeros(num_vars, num_scenarios); for i = 1:num_scenarios [x(:, i), fval] = linprog(c(i, :), A, b, [], [], zeros(num_vars, 1), ones(num_vars, 1), options); end % 计算期望目标函数值 exp_fval = mean(fval); % 计算期望决策变量值 exp_x = mean(x); % 输出结果 fprintf('期望目标函数值为: %f\n', exp_fval); fprintf('期望决策变量值为:\n'); disp(exp_x); end ``` 这段代码首先生成了一组随机情景,然后为每个情景设置了线性规划问题,最后计算了所有情景下决策变量和目标函数值的期望值。请注意,这只是一个简单的例子,实际应用中的随机规划问题可能会更加复杂,可能需要更高级的策略来处理不确定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值