LOFO (特征选择方法)

LOFO(Leave one Feature Out)是一种特征重要性评估方案,它能泛化到未知测试集,对负面特征给予负值,并自动处理相关特征。FastLOFO作为其快速实现,通过扰动特征值来估算重要性。文章介绍了LOFO的工作原理、FastLOFO的效率提升以及相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

LOFO


一、LOFO(目前适用于所有模型)

LOFO是一种特征重要性绘制方案,和其他特征重要性方法(线性相关回归模型的截距项、随机森林的特征重要性、XGBoost和LightGBM的特征重要性-plot_importance,线性数据的相关性等)相比,其特点简要概括为:

  • 可以较好的泛华到未知测试集
  • 对于带来负面效果的特征会给予一个负的值
  • 对特征进行分组,特别适用于高维特征,如TFIDF或ONE-HOT特征
  • 可以自动对高度相关的特征进行分组,以防止低估其重要性

LOFO(Leave one Feature Out) 的特征重要性过程:

  • 迭代的从特征集合中删除一个特征,并基于选择的度量,使用选择的验证方案评估模型的性能来计算一组集合的特征重要性。

步骤:

    1. 输入所有特征,LOFO基于所有特征评估包含全部特征的模型效果;
    2. 一次迭代删除一个特征,重新训练模型,并在验证集上评估其效果;
    3. 记录每个特征重要性的平均值和标准偏差。

    注意:如果我们不传入任何模型,LOFO默认运行的模型是LightGBM.

二、FastLOFO(目前适用于所有模型)

因为枚举的缘故,LOFO

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值