LOFO
一、LOFO(目前适用于所有模型)
LOFO是一种特征重要性绘制方案,和其他特征重要性方法(线性相关回归模型的截距项、随机森林的特征重要性、XGBoost和LightGBM的特征重要性-plot_importance,线性数据的相关性等)相比,其特点简要概括为:
- 可以较好的泛华到未知测试集
- 对于带来负面效果的特征会给予一个负的值
- 对特征进行分组,特别适用于高维特征,如TFIDF或ONE-HOT特征
- 可以自动对高度相关的特征进行分组,以防止低估其重要性
LOFO(Leave one Feature Out) 的特征重要性过程:
- 迭代的从特征集合中删除一个特征,并基于选择的度量,使用选择的验证方案评估模型的性能来计算一组集合的特征重要性。
步骤:
-
- 输入所有特征,LOFO基于所有特征评估包含全部特征的模型效果;
- 一次迭代删除一个特征,重新训练模型,并在验证集上评估其效果;
- 记录每个特征重要性的平均值和标准偏差。
注意:如果我们不传入任何模型,LOFO默认运行的模型是LightGBM.
二、FastLOFO(目前适用于所有模型)
因为枚举的缘故,LOFO