CLIP(Contrastive Language-Image Pretraining)主体网络代码详解

CLIP是OpenAI于2021年发表的工作,其采用无监督学习中的对比学习的训练方法,使用了规模巨大的数据集(4亿个图片文本对)来进行训练,其在多个数据集上均得到了让人欣喜的结果,有效地证实了NLP与CV结合所具备的巨大的潜力,并基于此产生了许多有趣的工作。在这里分享一下我对于CLIP主体网络代码的理解,可能会存在诸多纰漏,请大家多多指教。

paper:http://proceedings.mlr.press/v139/radford21a/radford21a.pdf

code: https://github.com/openai/CLIP

from collections import OrderedDict
from typing import Tuple, Union
from torch import nn
import numpy as np
import torch
import torch.nn.functional

#----------------------------------------------#
# ModifiedResNet50中标准残差结构--Bottleneck的定义
#----------------------------------------------#
class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1):
        super(Bottleneck,self).__init__()
        #---------------------------------------------------#
        # 所有的卷积层的步长均为1,但是当步长大于1时,在第二次卷积之后
        # 将会有一个平均池化层
        #---------------------------------------------------#
        self.conv1  = nn.Conv2d(inplanes, planes, 1, bias=False)
        self.bn1    = nn.BatchNorm2d(planes)

        self.conv2  = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
        self.bn2    = nn.BatchNorm2d(planes)
        #---------------------------------#
        # 当步长大于1时,将会通过一个平均池化层,
        #  否则将会直接对其跳过
        #---------------------------------#
        self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()

        self.conv3   = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
        self.bn3     = nn.BatchNorm2d(planes * self.expansion)

        self.relu       = nn.ReLU(inplace=True)
        self.downsample = None
        self.stride     = stride
        #--------------------------------------#
        # 执行该if语句时,"downsample layer"
        # 将会由二维平均池化,卷积以及BatchNorm2d组成
        #--------------------------------------#
        if stride > 1 or inplanes != planes * Bottleneck.expansion:
            self.downsample = nn.Sequential(OrderedDict([
                ("-1", nn.AvgPool2d(stride)),
                ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
                ("1", nn.BatchNorm2d(planes * self.expansion))
            ]))

    def forward(self, x: torch.Tensor):
        identity = x

        out = self.relu(self.bn1(self.conv1(x)))
        out = self.relu(self.bn2(self.conv2(out)))
        out = self.avgpool(out)
        out = self.bn3(self.conv3(out))
        #------------------------------------------#
        # 当downsample层不为空时,其将会对原始的输入张量
        # 执行三个序列操作
        #------------------------------------------#
        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)
        return out

#-----------------------------------#
# 对于AttentionPool2d这个类的定义
# 在ModifiedResNet50中被使用
#-----------------------------------#
class AttentionPool2d(nn.Module):
    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super(AttentionPool2d,self).__init__()
        #--------------------------------------------------#
        #  nn.Parameter()的作用为作为nn.Module中的可训练参数使用
        #--------------------------------------------------#
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
        #-------------------------------#
        # 通过全连接层来获取以下四个映射量
        #-------------------------------#
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        #---------------------------------------------------------------#
        # 首先进行张量shape的转变,由 batch_size,c,h,w -> (h*w),batch_size,c
        #---------------------------------------------------------------#
        x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1)
        #-------------------------------------------#
        # (h*w),batch_size,c -> (h*w+1),batch_size,c
        #-------------------------------------------#
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)
        #--------------------------------------------------------------------#
        # tensor的shape以及type均不发生改变,所做的只是将位置信息嵌入至原先的tensor中
        # shape:(h*w+1),batch_size,c
        #--------------------------------------------------------------------#
        x = x + self.positional_embedding[:, None, :].to(x.dtype)
        #---------------------------------------#
        # 将输入的张量pass through 多头注意力机制模块
        #---------------------------------------#
        x, _ = torch.nn.functional.multi_head_attention_forward(
            query=x, key=x, value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False
        )

        return x[0]

#-------------------------------------#
# CLIP中所使用到的ModifiedResNet50的定义
#-------------------------------------#
class ModifiedResNet(nn.Module):
    """
    A ResNet class that is similar to torchvision's but contains the following changes:
    - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
    - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
    - The final pooling layer is a QKV attention instead of an average pool
    - 最后的平均池化层我们使用一个 QKV注意力池化层来进行替代
    """

    def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
        super(ModifiedResNet,self).__init__()
        self.output_dim       = output_dim
        self.input_resolution = input_resolution
        #----------------------------------#
        # the 3- "stem" convolution layers
        #----------------------------------#
        self.conv1   = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn1     = nn.BatchNorm2d(width // 2)

        self.conv2   = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
        self.bn2     = nn.BatchNorm2d(width // 2)

        self.conv3   = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
        self.bn3     = nn.BatchNorm2d(width)

        self.relu    = nn.ReLU(inplace=True)
        self.avgpool = nn.AvgPool2d(2)
        #------------------------------------#
        # residual layers in ModifiedResNet50
        # 共计四层
        #------------------------------------#
        self._inplanes = width  # this is a *mutable* variable used during construction
        self.layer1   = self._make_layer(width, layers[0])
        self.layer2   = self._make_layer(width * 2, layers[1], stride=2)
        self.layer3   = self._make_layer(width * 4, layers[2], stride=2)
        self.layer4   = self._make_layer(width * 8, layers[3], stride=2)

        embed_dim     = width * 32  # the ResNet feature dimension
        #--------------------------------------------------#
        # 对于最后的平均池化层我们使用一个QKV注意力池化层来进行替代
        #--------------------------------------------------#
        self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
    #----------------------------------------#
    # ModifiedResNet50中的残差层的定义
    # 其中的blocks即为标准的残差结构--Bottleneck
    #----------------------------------------#
    def _make_layer(self, planes, blocks, stride=1):
        layers = [Bottleneck(self._inplanes, planes, stride)]

        self._inplanes = planes * Bottleneck.expansion
        for _ in range(1, blocks):
            layers.append(Bottleneck(self._inplanes, planes))

        return nn.Sequential(*layers)
    #-------------------------------#
    # ModifiedResNet50的前向传播函数
    #-------------------------------#
    def forward(self, x):
        #-----------------------------------------#
        # As to the 3-"stem" convolution layers
        # 在这里我们将三个卷积层集成到一个函数中使用
        # 每一层均为 conv->bn->relu
        #-----------------------------------------#
        def stem(x):
            for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
                x = self.relu(bn(conv(x)))
            x = self.avgpool(x)
            return x
        #------------------------------------------#
        # 这行code的作用在于对输入的张量进行一个type的转换
        #------------------------------------------#
        x = x.type(self.conv1.weight.dtype)
        #---------------------#
        # 过三个卷积层
        #---------------------#
        x = stem(x)
        #----------------------------------#
        # 过ModifiedResNet50中的残差结构,共4层
        #----------------------------------#
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        #--------------------------------------------------#
        # 对于最后的平均池化层我们使用一个QKV注意力池化层来进行替代
        #--------------------------------------------------#
        x = self.attnpool(x)

        return x

#-----------------------------------#
# transformer模块中所使用到的LayerNorm层
#-----------------------------------#
class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret       = super().forward(x.type(torch.float32))
        return ret.type(orig_type)

#--------------------------------#
# QuickGELU激活函数的定义
# 在transformer结构中的MLP层中被使用
#--------------------------------#
class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)

#-------------------------------------------------#
# transformer模块的定义,将会在transformer结构中被使用
# 1.多头注意力层
# 2.LayerNorm层
# 3.MLP层
#-------------------------------------------------#
class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
        super(ResidualAttentionBlock,self).__init__()
        #----------------------#
        # 多头注意力机制
        #----------------------#
        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        #-------------------------------------------------------------------#
        # 在MLP层中首先是进行一次全连接,之后是过QuickGELU激活函数,最后是通过投影进行映射
        #-------------------------------------------------------------------#
        self.mlp  = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2      = LayerNorm(d_model)
        self.attn_mask = attn_mask
    #-------------------------------------#
    # 该函数的作用是对输入的张量使用多头注意力机制
    #-------------------------------------#
    def attention(self, x: torch.Tensor):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
    #---------------------------------------------------------------#
    # 在这个前向传播函数中,对于transformer模块进行了定义以及说明
    #---------------------------------------------------------------#
    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))

        return x

#-------------------------------------#
# transformer结构的定义
# 即为多个transformer模块按照顺序进行堆叠
#-------------------------------------#
class Transformer(nn.Module):
    def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
        super(Transformer,self).__init__()
        self.width     = width
        self.layers    = layers
        self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])

    def forward(self, x: torch.Tensor):
        return self.resblocks(x)

#---------------------------------#
# VisionTransformer结构的定义
# 输入图片的通道数为3
#---------------------------------#
class VisionTransformer(nn.Module):
    def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
        super(VisionTransformer,self).__init__()
        self.input_resolution = input_resolution
        self.output_dim       = output_dim
        self.conv1            = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)

        scale = width ** -0.5
        #------------------------------------------#
        # 在这里我们可以用nn.Parameter()来将这
        # 个随机初始化的Tensor注册为可学习的参数Parameter
        #------------------------------------------#
        self.class_embedding      = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
        self.ln_pre               = LayerNorm(width)
        self.transformer          = Transformer(width, layers, heads)
        self.ln_post              = LayerNorm(width)
        self.proj                 = nn.Parameter(scale * torch.randn(width, output_dim))

    def forward(self, x: torch.Tensor):
        #-----------------------------------------------------------------------------------------#
        # 此处的卷积可以将张量的shape转变为batch_size,width,grid,grid(grid=input_resolution/patch_size)
        #-----------------------------------------------------------------------------------------#
        x = self.conv1(x)
        #---------------------------------------------#
        # reshape之后,shape=batch_size,width,grid ** 2
        #---------------------------------------------#
        x = x.reshape(x.shape[0], x.shape[1], -1)
        #----------------------------#
        # 转置之后,shape为
        # batch_size,grid ** 2,width
        #----------------------------#
        x = x.permute(0, 2, 1)
        #------------------------------------------------------#
        # pass这条语句之后,shape=batch_size,grid ** 2 + 1,width
        #------------------------------------------------------#
        x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)
        #--------------------------------------------#
        # 加上其位置编码信息,并且pass through LayerNorm层
        #--------------------------------------------#
        x = x + self.positional_embedding.to(x.dtype)
        x = self.ln_pre(x)
        #-----------------------------------------------#
        # shape先转变为grid ** 2 + 1,batch_size,width
        # 之后经由transformer结构编码
        # 最后再进行转置,恢复为batch_size,grid ** 2 + 1,width
        # 再pass through LayerNorm层
        #-----------------------------------------------#
        x = x.permute(1, 0, 2)
        x = self.transformer(x)
        x = x.permute(1, 0, 2)
        x = self.ln_post(x[:, 0, :])
        #-------------------------#
        # 若成立则将会进行矩阵乘法运算
        #-------------------------#
        if self.proj is not None:
            x = x @ self.proj

        return x

#------------------------#
# CLIP模型的定义
#------------------------#
class CLIP(nn.Module):
    def __init__(self,embed_dim: int,
                 #-------------------#
                 # vision部分的函数定义
                 #-------------------#
                 image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int,
                 #-------------------#
                 # text部分的函数定义
                 #-------------------#
                 context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int):
        super(CLIP,self).__init__()
        #------------------------#
        # 定义文本的长度
        #------------------------#
        self.context_length = context_length
        #--------------------------------------------#
        # image encoder
        # 对于image部分,可以使用ModifiedResNet50或者ViT
        #--------------------------------------------#
        if isinstance(vision_layers, (tuple, list)):
            vision_heads = vision_width * 32 // 64
            self.visual  = ModifiedResNet(
                layers           = vision_layers,
                output_dim       = embed_dim,
                heads            = vision_heads,
                input_resolution = image_resolution,
                width            = vision_width
            )
        else:
            vision_heads = vision_width // 64
            self.visual  = VisionTransformer(
                input_resolution = image_resolution,
                patch_size       = vision_patch_size,
                width            = vision_width,
                layers           = vision_layers,
                heads            = vision_heads,
                output_dim       = embed_dim
            )
        #---------------------------------------#
        # text encoder
        # 对于文字部分则直接使用Text Transformer即可
        #---------------------------------------#
        self.transformer = Transformer(
            width        = transformer_width,
            layers       = transformer_layers,
            heads        = transformer_heads,
            attn_mask    = self.build_attention_mask()
        )

        self.vocab_size           = vocab_size
        #----------------------------------------------#
        # token嵌入以及位置嵌入还有对于LayerNorm的进一步的定义
        #----------------------------------------------#
        self.token_embedding      = nn.Embedding(vocab_size, transformer_width)
        self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
        self.ln_final             = LayerNorm(transformer_width)
        #--------------------------------------------------------------------------#
        # 在这里我们可以用nn.Parameter()来将这个随机初始化的Tensor注册为可学习的参数Parameter
        # torch.empty用于返回一个未初始化的tensor
        # torch.zeros用于将tensor中元素值全置为0
        # torch.ones用于将tensor中元素值全置为1
        # logit_scale与 cosine similarities有关
        #--------------------------------------------------------------------------#
        self.text_projection      = nn.Parameter(torch.empty(transformer_width, embed_dim))
        self.logit_scale          = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
        #-------------------#
        # 定义了此类中的一个函数
        #-------------------#
        self.initialize_parameters()
    #---------------------------#
    # 部分权值的初始化操作
    #---------------------------#
    def initialize_parameters(self):
        nn.init.normal_(self.token_embedding.weight, std=0.02)
        nn.init.normal_(self.positional_embedding, std=0.01)

        if isinstance(self.visual, ModifiedResNet):
            if self.visual.attnpool is not None:
                std = self.visual.attnpool.c_proj.in_features ** -0.5
                nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)

            for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
                for name, param in resnet_block.named_parameters():
                    if name.endswith("bn3.weight"):
                        nn.init.zeros_(param)

        proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
        attn_std = self.transformer.width ** -0.5
        fc_std   = (2 * self.transformer.width) ** -0.5
        for block in self.transformer.resblocks:
            nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
            nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
            nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
            nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)

        if self.text_projection is not None:
            nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)

    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    @property
    def dtype(self):
        return self.visual.conv1.weight.dtype
    #-------------------#
    # image encoder函数
    #-------------------#
    def encode_image(self, image):
        return self.visual(image.type(self.dtype))
    #------------------------------------#
    # text encoder函数
    # 这里为一个单纯的 Text transformer结构
    #------------------------------------#
    def encode_text(self, text):
        x = self.token_embedding(text).type(self.dtype)  #shape=[batch_size, n_ctx, d_model]
        #----------------#
        # 嵌入位置信息
        #----------------#
        x = x + self.positional_embedding.type(self.dtype)
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.ln_final(x).type(self.dtype)

        # x.shape = [batch_size, n_ctx, transformer.width]
        # transformer.width为上面定义的d_model
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection

        return x
    #--------------------------------------------------------------#
    # CLIP这个类的前向传播函数的定义
    # 即为CLIP整体模型的定义
    #--------------------------------------------------------------#
    def forward(self, image, text):
        #---------------------------------------------#
        # 使用ModifiedResNet50或者ViT来完成图像信息的编码
        # 使用Text transformer来完成文本信息的编码
        #---------------------------------------------#
        image_features   = self.encode_image(image)
        text_features    = self.encode_text(text)
        #---------------------------------#
        # joint multimodal embedding
        # normalized features
        #---------------------------------#
        image_features   = image_features / image_features.norm(dim=-1, keepdim=True)
        text_features    = text_features / text_features.norm(dim=-1, keepdim=True)
        #--------------------------------#
        # 计算图像以及文本的相似度
        # cosine similarity as logits
        #--------------------------------#
        logit_scale      = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text  = logits_per_image.t()
        #-------------------------------------------------#
        # 所返回的张量的shape为
        # shape = [global_batch_size, global_batch_size]
        #-------------------------------------------------#
        return logits_per_image, logits_per_text

#-----------------------------#
# 为了训练加速使用到了混合精度运算
#-----------------------------#
def convert_weights(model: nn.Module):
    """Convert applicable model parameters to fp16"""

    def _convert_weights_to_fp16(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
            l.weight.data = l.weight.data.half()
            if l.bias is not None:
                l.bias.data = l.bias.data.half()

        if isinstance(l, nn.MultiheadAttention):
            for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
                tensor = getattr(l, attr)
                if tensor is not None:
                    tensor.data = tensor.data.half()

        for name in ["text_projection", "proj"]:
            if hasattr(l, name):
                attr = getattr(l, name)
                if attr is not None:
                    attr.data = attr.data.half()

    model.apply(_convert_weights_to_fp16)

#-----------------------------------------------#
# CLIP模型的创建
#-----------------------------------------------#
def build_model(state_dict: dict):
    vit = "visual.proj" in state_dict

    if vit:
        vision_width      = state_dict["visual.conv1.weight"].shape[0]
        vision_layers     = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
        vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
        grid_size         = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
        image_resolution  = vision_patch_size * grid_size
    else:
        counts: list      = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
        vision_layers     = tuple(counts)
        vision_width      = state_dict["visual.layer1.0.conv1.weight"].shape[0]
        output_width      = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
        vision_patch_size = None
        assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
        image_resolution  = output_width * 32

    embed_dim          = state_dict["text_projection"].shape[1]
    context_length     = state_dict["positional_embedding"].shape[0]
    vocab_size         = state_dict["token_embedding.weight"].shape[0]
    transformer_width  = state_dict["ln_final.weight"].shape[0]
    transformer_heads  = transformer_width // 64
    transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))

    model = CLIP(
        embed_dim,
        image_resolution, vision_layers, vision_width, vision_patch_size,
        context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
    )

    for key in ["input_resolution", "context_length", "vocab_size"]:
        if key in state_dict:
            del state_dict[key]

    convert_weights(model)
    model.load_state_dict(state_dict)
    return model.eval()

  • 27
    点赞
  • 86
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
对比式自监督学习是一种无监督学习的方法,旨在通过通过训练模型来学习数据的表示。这种方法在计算机视觉领域中得到了广泛的应用。 对比式自监督学习的核心思想是通过将数据例子与其在时间或空间上的某种变形或扭曲版本对比,来训练模型。这种对比鼓励模型捕捉到数据的关键特征,从而学习到更好的表示。 对比式自监督学习的一个常见应用是图像的自学习。通过将图像进行旋转、剪切、缩放等变形,来构建一个正样本(原始图像)和负样本(变形图像)对。然后将这些对输入到一个深度神经网络中进行训练,以学习图像表示。训练过程中,网络被要求将正样本和负样本区分开,从而学习到图像的特征。 对比式自监督学习有许多优点。首先,它不需要标注数据,使其适用于大规模的无标签数据。其次,由于数据自动生成,可以轻松地扩展到大数据集。另外,对比式自监督学习的模型可以用于其他任务的迁移学习,使得模型更通用。 然而,对比式自监督学习也存在一些挑战和限制。首先,生成变形样本的过程可能会降低数据的质量,从而降低学习效果。其次,选择合适的变形方式和参数也是一个挑战。另外,对于某些领域和任务,对比式自监督学习可能不适用或效果不佳。 总之,对比式自监督学习是一种有效的无监督学习方法,可用于数据表示学习。它在计算机视觉领域有着广泛的应用,并具有许多优点。然而,仍然需要进一步的研究和发展来克服其中的挑战和限制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XuecWu3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值