clip代码详解

本文深入解析CLIP模型的工作流程,包括图像和文本的特征提取损失,重点介绍了VIT Transformer的使用以及自监督学习策略。通过代码示例展示了特征提取和相似度计算的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关代码链接见文末

1.数据及流程 

        CLIP整体流程如下,首先对图像提特征、对文本提特征,并进行配对,计算出余弦相似度,另外,图像自身和文本自身进行自监督学习,因此loss函数有3个部分,包含图像的自监督学习、文本的自监督学习以及图像和文本的配对 

         

2.图像特征提取损失和文本特征提取损失

        在图像的特征提取中,分别对图像进行两种不同的数据增强q,k,并传入VIT进行特征提取。   

代码如下:

class SimCLR(nn.Module):
    def __init__(
        self,
        net,
        image_size,
        channels = 3,
        hidden_layer = -2,
        project_hidden = True,
### CLIP模型工作原理详解 #### 一、CLIP模型概述 CLIP(Contrastive Language–Image Pre-training)是一个由OpenAI开发的多模态深度学习模型,旨在通过联合训练图像和文本数据来生成统一的特征空间[^1]。该模型的核心目标是从大量的互联网图文对中提取有用的信息,并将其转化为可以应用于多种下游任务的知识。 #### 二、基本原理 CLIP模型基于对比学习机制构建其核心功能。具体来说,它通过对齐大量未标注的图像-文本对中的语义信息,使得模型能够在无需额外标签的情况下完成复杂的视觉识别任务[^3]。以下是CLIP模型的关键组成部分及其工作机制: 1. **对比学习机制** 对比学习是CLIP的基础理论之一。在这一过程中,模型会尝试最大化正样本对(即匹配的图像与文本对)之间的相似度,同时最小化负样本对(不匹配的图像与文本对)之间的相似度。这种方法有效地提高了模型对于不同模态间关联性的理解能力。 2. **零样本分类能力** 经过充分预训练后的CLIP具备强大的泛化性能——即使从未见过某些特定类别的样本,也能依靠已有的知识库对其进行合理推测并作出判断。这是因为自然语言作为媒介连接起了各种可能存在的视觉概念,从而赋予了模型极大的灵活性。 3. **数据增强技术** 数据质量直接影响着最终效果的好坏程度;因此,在实际操作当中往往会采用一些技巧手段来扩充有效训练素材的数量规模以及多样性水平。其中包括但不限于以下几种方式: - 图像增强:裁剪、旋转、颜色调整等随机变换处理; - 文本增强:同义词替换、句式改写等形式变化。 #### 三、Prompt工程与微调策略 为了进一步优化CLIP的表现力,研究者们提出了针对不同类型应用场景设计专属提示模板(prompt engineering),并通过少量真实世界样本来指导参数更新过程(即所谓“微调”)的技术路线图。这不仅有助于保留原有大规模无监督习得的能力优势,同时也能够更好地适配具体的业务需求特点。 #### 四、Python实现概览 下面给出一段简单的代码片段展示如何快速启动一个基础版本的CLIP推理流程: ```python import torch from PIL import Image import clip device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) image = preprocess(Image.open("example.jpg")).unsqueeze(0).to(device) text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) logits_per_image, logits_per_text = model(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]] ``` 此段脚本展示了加载预训练权重文件、准备输入张量结构以及执行前向传播计算得到输出概率分布的具体步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值