用结构体表示矩阵:
const int MAXN = 100;
struct Matrix {
int row, col;
int matrix[MAXN][MAXN];
Matrix(int r, int c) : row(r), col(c){} //构造函数
}
考点:
- 矩阵相加
- 矩阵相乘
- 矩阵转置
- 矩阵求幂
矩阵的输入输出:
void InputMatrix(Matrix& x){
for(int i = 0; i < x.row; ++i){
for(int j = 0; j < x.col; ++j){
scanf("%d", &x.matrix[i][j]);
}
}
return;
}
void OutputMatrix(Matrix x){
for(int i = 0; i < x.row; ++i){
for(int j = 0; j < x.col; ++j){
printf("%d ", x.matrix[i][j]);
}
printf("\n");
}
return;
}
矩阵相加:
Matrix Add(Matrix x, Matrix y){
Matrix answer = Matrix(x.row, x.col);
for(int i = 0; i < answer.row; ++i){
for(int j = 0; j < answer.col; ++j){
answer.matrix[i][j] = x.matrix[i][j] + y.matrix[i][j];
}
}
return answer;
}
矩阵相乘:
Matrix Multiply(Matrix x, Matrix y){
Matrix answer = Matrix(x.row, y.col);
for(int i = 0; i < answer.row; ++i){
for(int j = 0; j < answer.col; ++j){
answer.matrix[i][j] = 0;
for(int k = 0; k < x.col; ++k){
answer.matrix[i][j] += x.matrix[i][k] * y.matrix[k][j];
}
}
}
return answer;
}
矩阵转置:
Matrix Transpose(Matrix x){
Matrix answer = Matrix(x.col, x.row);
for(int i = 0; i < answer.row; ++i){
for(int j = 0; j < answer.col; ++j){
answer.matrix[i][j] = x.matrix[j][i];
}
}
return answer;
}
矩阵求幂:
Matrix QuickPower(Matrix x, int n){
Matrix answer = Matrix(x.row, x.col);
for(int i = 0; i < answer.row; ++i){
for(int j = 0; j < answer.col; ++j){
if(i == j){
answer.matrix[i][j] = 1;
}else{
answer.matrix[i][j] = 0;
}
}
}
while(n != 0){
if(n % 2 == 1){
answer = Multiply(answer, x);
}
n /= 2;
x = Multiply(x, x);
}
return answer;
}