
强化学习&Isaaclab
文章平均质量分 77
基于强化学习的Isaacsim,Isaaclab框架学习。
跳跳糖炒酸奶
这个作者很懒,什么都没留下…
展开
-
第四章、SKRL(2):API(Memories)
本节将详细介绍skrl中的API,我们只做Pytorch部分的说明。原创 2025-05-15 13:30:32 · 588 阅读 · 0 评论 -
第二章、Isaaclab强化学习包装器(3):SKRL Wrapper
在本节中,您将学习如何使用 skrl 库的各种组件来创建强化学习任务。进入安装 isaac lab 时创建的conda虚拟环境在该环境下进入 isaac sim文件夹中运行终端中输入运行你的代码,进行训练。原创 2025-05-14 14:10:07 · 350 阅读 · 0 评论 -
第二章、Isaaclab强化学习包装器(2):RSL-RL Wrapper
本节将详细介绍RSL-RL Wrapper包装器。原创 2025-05-14 11:21:14 · 321 阅读 · 0 评论 -
第三章、RL Games:High performance RL library
RL Games 是由 NVIDIA 开发的一个专注于强化学习(Reinforcement Learning, RL)的高性能开源框架,主要用于快速训练和部署强化学习模型。其设计目标是为复杂环境(如机器人控制、游戏AI、多智能体系统等)提供高效的训练工具,同时支持分布式训练和GPU加速。本文介绍了rl_games强化学习库的一些基本功能。此外,本文还提供了使用类似IsaacGymEnvs包的结构(IsaacLab可参考)创建新环境和算法,为 rl_games 的扩展指南。原创 2025-05-07 17:27:46 · 635 阅读 · 0 评论 -
第二章、Isaaclab强化学习包装器(1):RL-Games Wrapper
第十二讲、Isaaclab中使用RL对智能体进行训练本节将详细介绍RL-Games Wrapper包装器。进入安装 isaac lab 时创建的conda虚拟环境在该环境下进入 isaac sim文件夹中运行终端中输入运行你的代码,进行训练。原创 2025-04-28 17:57:08 · 444 阅读 · 0 评论 -
第一章:基于强化学习策略及Isaacsim的四足机器人移动
本节以spot四足机器人为例展开,具体内容包含以下部分做了些什么。明确spot.usd的结构。运用的policy.pt的输入输出分别是什么。如何控制spot.usd中的joint运动。原创 2025-04-08 17:16:42 · 661 阅读 · 0 评论