【多模态大模型实战】 搭建通义千问Qwen 2.5-VL-7B-Instruct多模态模型,以及推理微调

模型信息

Qwen2.5是Qwen大型语言模型的最新系列。对于Qwen2.5,我们发布了从0.5亿到72亿参数不等的一系列基础语言模型和指令调优语言模型。Qwen2.5在Qwen2的基础上带来了以下改进:

  • 拥有了显著更多的知识,并且在编码和数学方面的能力得到了极大提升,这得益于我们在这些领域开发的专门专家模型。

  • 在指令遵循、生成长文本(超过8000个标记)、理解结构化数据(如表格)以及生成结构化输出(特别是JSON)方面有了显著改善。对系统提示的多样性更具适应性,增强了聊天机器人的角色扮演实现和条件设置。

  • 支持长达128,000个标记的长上下文,并能生成多达8,000个标记的文本。

  • 支持超过29种语言,包括中文、英文、法文、西班牙文、葡萄牙文、德文、意大利文、俄文、日文、韩文、越南文、泰文、阿拉伯文等。
    在这里插入图片描述

  • 代码链接:https://github.com/QwenLM/Qwen2.5-VL

  • 模型链接:https://www.modelscop

### 对Qwen2.5-VL-7B-Instruct进行微调的方法 对于Qwen2.5-VL-7B-Instruct模型微调,可以借鉴LLaVA-Instruct-158K数据集上的训练参数设置。具体而言,在该数据集上执行微调时采用的学习率为2e-5,批处理大小设定为32,并且整个过程持续了3个epoch[^1]。 为了确保模型能够适应特定的任务需求并优化性能表现,建议采取以下措施: #### 数据准备 构建高质量的数据集至关重要。应收集与目标应用场景紧密关联的图像及其对应的描述或答对作为训练样本。这些样例需具备足够的多样性以覆盖各种可能的情况,从而帮助模型更好地泛化到未见过的数据。 #### 训练配置调整 基于先前的经验教训,当涉及到视觉答任务时,应当特别注意输入提示的设计。为了避免模型倾向于生成过短的回答,可尝试改进提示模板,使其更加精确地指导预期输出格式。例如,可以通过显式指定希望获得的具体信息量级来引导更详细的回应[^2]。 此外,考虑到不同组件之间的协作机制,如果计划利用多模态架构,则有必要评估各部分间的交互效果以及整体系统的稳定性。这或许意味着要探索不同于传统方式的新颖设计方案,比如引入混合变换器结构来增强跨模式融合的能力[^3]。 ```python from transformers import AutoModelForVision2Seq, AutoTokenizer, Trainer, TrainingArguments model_name = "Qwen/Qwen2.5-VL-7B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForVision2Seq.from_pretrained(model_name) training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=32, learning_rate=2e-5, logging_dir='./logs', ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, tokenizer=tokenizer, ) trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值