【从零开始系列】Qwen2.5-VL:通义千问最新发布的多模态大模型!——环境配置 + 多功能使用实验(图片识别理解、目标检测、文字OCR、文档解析、视频理解)


目录

一、环境配置

        1.基础环境

         2.开发测试版Transformers库源码安装

        3.模型参数下载

二、基础使用(环境测试)

        1.硬件要求

         2.推理测试

三、实验

        1.多图识别

        2.目标定位

        3.OCR

        4.文档解析

        5.视频理解


资源

  Qwen2.5-VL源码地址:https://github.com/QwenLM/Qwen2.5-VL

                       Blog地址:https://qwenlm.github.io/zh/blog/qwen2.5-vl/

                       模型地址:https://modelscope.cn/collections/Qwen25-VL-58fbb5d31f1d47


 一、环境配置

        1.基础环境

        首先配置基础的python、pytorch环境和比较好安装的依赖包

# 环境配置
conda create -n qwen-vl python=3.10 -y
conda activate qwen-vl

# torch环境
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu118

pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu124

# 其他依赖包安装
pip install numpy==1.26.2   # 注意这里指明不能安装大于2.x版本以上的numpy库
pip install accelerate
pip install qwen-vl-utils==0.0.10

         2.开发测试版Transformers库源码安装

        注意需要安装最新版的 transformers 库,由于qwen2.5-vl模型加载方法定义在最新测试版的 transformers库中,普通 pip install transformers 不能安装到该部分方法,因此要从源代码上安装测试版的4.49.0.dev0。

        具体方法就是访问下面的源码地址,下载zip包并解压到本地,命令行访问到下载包目录pip install . 安装即可。

        源安装transformers库地址:https://github.com/huggingface/transformers

# 源安装transformers指令
cd transformers-main
pip install .

        安装完成后可以测试成功与否,输入下面代码在pycharm环境中不报红色波浪号

# 测试最新测试版transformers安装是否成功
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor

        或者运行上面代码不会下方的红色报错。则表明安装成功。  

        3.模型参数下载

        这里选择使用魔搭社区的下载地址:https://modelscope.cn/collections/Qwen25-VL-58fbb5d31f1d47

        可以看到官方开源了三个量级的多模态模型。分别是3B、7B、72B,下面首先以3B模型作为测试环境样例,后续使用将测试三个模型的不同表现。

        下载方式可以参考之前Deepseek博文中的模型参数下载部分,这里不多赘述,指令如下。

# 魔搭社区qwen2.5-vl下载指令

## 3B模型
modelscope download --model Qwen/Qwen2.5-VL-3B-Instruct --local_dir path/to/save

## 7B模型
modelscope download --model Qwen/Qwen2.5-VL-7B-Instruct --local_dir path/to/save

## 72B模型
modelscope download --model Qwen/Qwen2.5-VL-72B-Instruct --local_dir path/to/save

二、基础使用(环境测试)

        1.硬件要求

        首先测试一下模型加载所需的GPU显存要求,可以用下面代码进行模型加载测试,其中需修改模型加载地址:model_path 和 GPU 选择:"1" 。

from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
import os

os.environ[
<think>嗯,用户想了解transformers版本4.49.0.dev0的文档和更新。首先,我需要确认这个版本是否存在。因为4.49.0.dev0看起来像是一个开发版本,通常.dev0表示预发布版本,可能还没有正式发布。接下来,我应该检查Hugging Face的官方渠道,比如他们的GitHub仓库或者文档网站。 用户可能需要知道这个版本的新特性、修复的题或者安装方法。开发版本通常需要通过源码安装,比如使用pip install git+https://github.com/huggingface/transformers.git。不过,用户需要注意开发版可能不稳定,可能存在bug。 另外,用户可能没有找到官方文档,因为开发版的文档可能还没更新。这时候可以建议用户查看GitHub的提交记录或Pull Request来了解具体变更。同时,提醒用户关注Hugging Face的社交媒体或博客,获取最新动态。 用户的需求可能涉及他们正在使用某个新功能,或者遇到了题需要这个特定版本解决。需要确认这个版本是否真的存在,或者是否是用户记错了版本号。如果不存在,可能需要引导用户检查版本号的正确性,或者等待正式发布。</think>关于transformers版本4.49.0.dev0的文档和更新信息,根据当前可获取的公开资料显示: 1. **版本性质确认** 4.49.0.dev0属于开发版本(development version),".dev0"后缀表明这是主版本发布前的测试版本,通常包含实验性功能或未最终确定的代码变更[^1]。 2. **获取方式** - 可通过源码安装获取该版本: ```bash pip install git+https://github.com/huggingface/transformers.git ``` - 开发版本可能包含API变动或未完善的文档,建议在虚拟环境中使用[^2] 3. **更新内容推测** 根据Hugging Face的迭代规律,该版本可能包含: - 新型模型架构支持(如改进的LLM推理优化) - 分布式训练性能增强 - 安全补丁或依赖库版本更新 4. **文档查询建议** 开发版文档通常不会单独发布,可通过以下方式追踪变更: - GitHub提交记录:https://github.com/huggingface/transformers/commits/main - 官方博客预发布公告 - 社区讨论区(如Hugging Face Forum)
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值