目录
资源
Qwen2.5-VL源码地址:https://github.com/QwenLM/Qwen2.5-VL
Blog地址:https://qwenlm.github.io/zh/blog/qwen2.5-vl/
模型地址:https://modelscope.cn/collections/Qwen25-VL-58fbb5d31f1d47
一、环境配置
1.基础环境
首先配置基础的python、pytorch环境和比较好安装的依赖包
# 环境配置
conda create -n qwen-vl python=3.10 -y
conda activate qwen-vl
# torch环境
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu118
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu124
# 其他依赖包安装
pip install numpy==1.26.2 # 注意这里指明不能安装大于2.x版本以上的numpy库
pip install accelerate
pip install qwen-vl-utils==0.0.10
2.开发测试版Transformers库源码安装
注意:需要安装最新版的 transformers 库,由于qwen2.5-vl模型加载方法定义在最新测试版的 transformers库中,普通 pip install transformers 不能安装到该部分方法,因此要从源代码上安装测试版的4.49.0.dev0。
具体方法就是访问下面的源码地址,下载zip包并解压到本地,命令行访问到下载包目录pip install . 安装即可。
源安装transformers库地址:https://github.com/huggingface/transformers
# 源安装transformers指令
cd transformers-main
pip install .
安装完成后可以测试成功与否,输入下面代码在pycharm环境中不报红色波浪号
# 测试最新测试版transformers安装是否成功
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
或者运行上面代码不会下方的红色报错。则表明安装成功。
3.模型参数下载
这里选择使用魔搭社区的下载地址:https://modelscope.cn/collections/Qwen25-VL-58fbb5d31f1d47
可以看到官方开源了三个量级的多模态模型。分别是3B、7B、72B,下面首先以3B模型作为测试环境样例,后续使用将测试三个模型的不同表现。
下载方式可以参考之前Deepseek博文中的模型参数下载部分,这里不多赘述,指令如下。
# 魔搭社区qwen2.5-vl下载指令
## 3B模型
modelscope download --model Qwen/Qwen2.5-VL-3B-Instruct --local_dir path/to/save
## 7B模型
modelscope download --model Qwen/Qwen2.5-VL-7B-Instruct --local_dir path/to/save
## 72B模型
modelscope download --model Qwen/Qwen2.5-VL-72B-Instruct --local_dir path/to/save
二、基础使用(环境测试)
1.硬件要求
首先测试一下模型加载所需的GPU显存要求,可以用下面代码进行模型加载测试,其中需修改模型加载地址:model_path 和 GPU 选择:"1" 。
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
import os
os.environ[