【大模型部署实战】VLLM+OpenWebUI实现DeepSeek模型部署

摘要

vLLM(Very Large Language Model Serving)是由加州大学伯克利分校团队开发的高性能、低延迟大语言模型(LLM)推理和服务框架。其核心创新在于PagedAttention技术,通过将注意力键值(KV)缓存分页管理,显著提升显存利用率并降低碎片化问题,使吞吐量比传统框架(如Hugging Face Transformers)提升24倍。该框架支持连续批处理动态显存分配多GPU并行推理,能够高效处理8k+长上下文请求,并兼容OpenAI API接口,开发者可快速部署Hugging Face模型。通过集成FP8、AWQ等量化技术,vLLM在保证推理精度的同时大幅降低资源消耗,目前已成为企业级AI部署(如DeepSeek-R1 671B模型分布式集群)的首选方案。

中文文档:https://vllm.hyper.ai/docs/

vLLM 核心特性

  1. 最先进的服务吞吐量

    • 通过 PagedAttention 技术实现内存优化,吞吐量比传统框架(如 Hugging Face Transfo
### 如何在 OpenWebUI部署 DeepSeek 为了实现这一目标,首先需要验证 DeepSeek 是否已经成功下载并可用。通过命令 `ollama list` 可确认 DeepSeek 的版本是否已存在,预期输出应为 `deepseek-r1:latest`[^3]。 #### 启动 DeepSeek 模型服务 确保 DeepSeek 正常运行之后,在终端执行如下指令来启动模型的服务: ```bash ollama run deepseek-r1 ``` 这一步骤会激活交互式的聊天模式,允许用户与 AI 进行实时交流。 对于那些希望通过编程接口访问 DeepSeek 功能的人,则可以利用 API 调试模式发送 HTTP 请求给本地服务器: ```bash curl http://localhost:11434/api/generate -d '{"model": "deepseek-r1", "prompt": "用python写快速排序"}' ``` 此操作将触发基于指定提示词生成响应的过程。 #### 使用 Docker 安装 OpenWebUI 并连接至 DeepSeek 完成上述准备工作后,下一步就是设置 Web 用户界面以便更直观地管理和调用 DeepSeek。这里推荐采用 Docker 方式来进行 OpenWebUI 的安装,具体做法如下所示: ```dockerfile docker run -d -p 3000:8080 \ -e OLLAMA_BASE_URL=http://host.docker.internal:11434 \ --name openwebui \ --restart always \ ghcr.io/open-webui/open-webui:main ``` 这段脚本不仅指定了容器映射端口(外部 3000 对应内部 8080),还设置了环境变量指向之前提到的 DeepSeek RESTful 接口地址;最后赋予了容器名称以及自动重启策略以提高稳定性。 一旦这些步骤都顺利完成,就可以打开浏览器输入 `http://localhost:3000` 来查看新搭建好的 OpenWebUI 控制面板了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值