vLLM+Qwen-32B+Open Web UI构建本地私有大模型

1. vLLM简介

vLLM(Vectorized Large Language Model Serving System)是由加州大学伯克利分校团队开发的高性能、易扩展的大语言模型(LLM)推理引擎,专注于通过创新的内存管理和计算优化技术实现高吞吐、低延迟、低成本的模型服务。vLLM采用PagedAttention内存管理技术,显著提升GPU显存利用率,同时支持分布式推理,能高效利用多机多卡资源。无论是低延迟、高吞吐的在线服务,还是资源受限的边缘部署场景,vLLM 都能提供卓越的性能表现。

  • 中文站点:https://vllm.hyper.ai/docs/

  • 英文站点:https://docs.vllm.ai/en/latest/index.html

2. ModelScope简介

ModelScope‌是一个由阿里巴巴集团推出的开源模型即服务(MaaS)平台,旨在简化模型应用的过程,为AI开发者提供灵活、易用、低成本的一站式模型服务产品。该平台汇集了多种最先进的机器学习模型,涵盖自然语言处理、计算机视觉、语音识别等多个领域,并提供丰富的API接口和工具,使开发人员能够轻松地集成和使用这些模型。‌

  • 官方网站:https://modelscope.cn/models
安装ModelScope
pip install modelscope -i https://pypi.tuna.tsinghua.edu.cn/simple
创建存储目录
mkdir -p /data/Qwen/models/Qwen-32B
下载QwQ-32B模型
modelscope download --local_dir /data/Qwen/models/Qwen-32B --model Qwen/QWQ-32B
3. 启用与优化NVIDIA GPU
更新软件包列表
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
配置NVIDIA容器运行时
sudo nvidia-ctk runtime configure --runtime=docker
重启服务
sudo systemctl daemon-reload && sudo systemctl restart docker
4. 运行vLLM容器
拉取镜像
docker pull docker.1panel.live/vllm/vllm-openai
启动vLLM容器
docker run -itd --restart=always --name Qwen-32B \`  `-v /data/Qwen:/data \`  `-p 18005:8000 \`  `--gpus '"device=1,2,3,4"' \`  `--ipc=host --shm-size=16g \`  `vllm/vllm-openai:latest \`  `--dtype bfloat16 \`  `--served-model-name Qwen-32B \`  `--model "/data/models/Qwen-32B" \`  `--tensor-parallel-size 4 \`  `--gpu-memory-utilization 0.95 \`  `--max-model-len 81920 \`  `--api-key token-abc123 \`  `--enforce-eager
Docker命令参数解析详解
  • -i(interactive):允许用户与容器进行交互,即使容器不在前台运行。用户可以通过docker logsdocker attach命令查看容器的输出日志

  • -t(tty):分配一个伪TTY(虚拟终端)到容器,模拟终端环境。

  • -d(detach:在后台运行容器,不占用当前终端。

  • –restart=always:设置容器在主机重启或容器退出后自动重启。

  • –name Qwen-32B:为容器指定一个唯一的名称。

  • -v /data/Qwen:/data:将宿主机上的/data/Qwen目录挂载到容器内的/data目录。避免容器重启或删除而导致的数据丢失问题。

  • -p 18005:8000:将宿主机的18005端口映射到容器内的8000端口。

  • –gpus ‘“device=1,2,3,4”’:指定容器使用宿主机上的GPU设备1、2、3、4。

  • –ipc=host:共享宿主机的IPC(进程间通信)命名空间,允许容器与宿主机的进程进行通信。

VLLM模型启动参数
  • –dtype bfloat16:指定使用bfloat16(Brain Floating Point 16)进行模型计算。

  • –served-model-name Qwen-32B:设置模型的服务名称为“Qwen-32B”,用于API请求时的模型标识。

  • –model “/data/models/Qwen-32B”:指定模型文件的路径为容器内的/data/models/Qwen-32B

  • –tensor-parallel-size 4:设置张量并行的规模为4,对应使用4块GPU进行模型并行计算。

  • –gpu-memory-utilization 0.85:设置GPU内存使用率为85%,预留15%的内存空间,防止因内存溢出导致的程序崩溃。

  • –max-model-len 81920:指定模型的最大上下文长度为81920 Token。模型在单次推理中可以处理的输入和输出的总Token数不超过81920个。

  • –api-key token-abc123:设置API访问密钥为“token-abc123”,调用API时需要在请求头中提供此密钥。

  • –enforce-eager:启用Eager执行模式,确保模型推理时逐层计算,避免由于延迟执行可能引发的内存问题。

5. Open Web UI部署
拉取open-webui镜像
docker pull ghcr.nju.edu.cn/open-webui/open-webui:main
启动Open Web UI
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway \`  `-v /data/open-webui:/app/backend/data \`  `--name open-webui --restart always ghcr.nju.edu.cn/open-webui/open-webui:main
访问Web界面

浏览器访问:http://localhost:3000

管理员面板–外部链接–新建模型连接

模型ID留空即可自动从/v1/models接口中获取,开启新对面默认选择DeepSeek-R1-Distill-Llama-70B模型

开启新对话

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 部署环境准备 为了在鲲鹏和昇腾平台上成功部署 DeepSeek-R1-Distill-Qwen-32B 模型并集成 WebUI,需先准备好相应的软件包和支持库。确保操作系统已安装 Python 3.x 版本以及 pip 工具。对于特定硬件的支持,需要安装 NPU 的驱动程序与 CANN (Compute Architecture for Neural Networks) SDK 来适配昇腾处理器[^1]。 ### 安装依赖项 通过命令行工具更新系统包管理器,并安装必要的 Python 库来支持模型加载和服务启动: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu pip install transformers sentencepiece gradio flask ``` 上述命令会安装 PyTorch 及其扩展模块、Hugging Face Transformers 库用于处理预训练语言模型、SentencePiece 进行分词操作以及 Gradio 和 Flask 构建简易的 Web UI 接口。 ### 下载模型文件 前往 ModelScope 平台获取目标模型权重文件 `DeepSeek-R1-Distill-Qwen-32B` ,并将之放置于项目根目录下或指定路径内以便后续调用。 ### 编写服务脚本 创建一个新的 Python 文件作为入口点,在其中定义好 API 路由逻辑并与前端页面交互展示推理结果。下面是一个简单的例子说明如何实现这一功能: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch import gradio as gr tokenizer = AutoTokenizer.from_pretrained("path/to/model") model = AutoModelForCausalLM.from_pretrained("path/to/model") def predict(text_input): inputs = tokenizer.encode_plus( text_input, add_special_tokens=True, return_tensors="pt" ) with torch.no_grad(): outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response iface = gr.Interface(fn=predict, inputs='text', outputs='text') if __name__ == "__main__": iface.launch() ``` 此段代码实现了基于 Transformer 结构的语言生成任务接口,利用 Gradio 提供了一个简洁易用的文字输入框让用户提交待预测文本串,并返回经过 Qwen 大规模对话理解能力加工后的回复内容。 ### 启动应用 完成以上配置之后就可以运行该应用程序了。打开终端窗口进入包含 main.py 的工作空间执行 python 命令即可开启 HTTP Server 监听来自浏览器端发起请求的服务实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值