第一章:Transformer背景介绍
1.1 Transformer的诞生¶
2018年10月,Google发出一篇论文《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》, BERT模型横空出世, 并横扫NLP领域11项任务的最佳成绩!
而在BERT中发挥重要作用的结构就是Transformer, 之后又相继出现XLNET,roBERT等模型击败了BERT,但是他们的核心没有变,仍然是:Transformer.
1.2 Transformer的优势¶
相比之前占领市场的LSTM和GRU模型,Transformer有两个显著的优势:
1
, Transformer能够利用分布式GPU进行并行训练
,提升模型训练效率
.
2
,
在分析预测更长的文本时
,
捕捉间隔较长的语义关联效果更好
.
下面是一张在测评比较图: