Matlab解非线性规划问题(fmincon)

本文介绍了非线性规划的基本概念,包括实际问题的建模过程和MATLAB中的fmincon函数用于求解非线性多变量函数最小值的方法。详细阐述了函数的定义方式,包括符号定义、内联函数和匿名函数,并通过两个实例展示了如何使用fmincon求解非线性优化问题。实例分析中涉及了目标函数和约束条件的设定,以及非线性约束的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、准备知识

1.非线性规划

2.实际问题建模过程(最优化问题)

3.fmincon函数用来约束非线性多变量函数的最小值

4.形式化问题(来源:川川菜鸟)

二、函数定义方法

1.符号定义法

2.内联函数定义法

3.匿名函数定义法 

 三、实例

3.1实例1

3.2实例2(来源@皮皮冬)

 四、总结


一、准备知识

       前面,我们叙述了线性规划和整数规划,可以看出来,整数规划是线性规划一种特殊情况。而非线性规划就是在线性规划和单纯形法的基础上演变而来的。

1.非线性规划

        对于非线性规划,只要目标函数和约束条件中包含非线性的等式或不等式即可。


2.实际问题建模过程(最优化问题)

       2.1确定方案:收集资料数据,分析问题,确定选择方案,用变量表示影响因素。

       2.2找寻目标函数:分析资料,结合实际问题与需要,提出极小化或者极大化的目标。

       2.3确立评价标准:确定评价的好坏区分,制定或指定标准。

        2.4找约束条件:在一定条件下寻找取得最小化或最大化的效果,找出限制条件,或定义域,用等式或不等式进行表示。


3.fmincon函数用来约束非线性多变量函数的最小值

x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

       在这个函数中,fun为目标函数,x0为处值,必须为实数,可任意选择,原因在其他博客上看到是不影响全局最优解和局部最优解的选择。A,b为Ax\leqslant b中的系数矩阵与向量。Aeq和beq是线性约束中的等式。lb为变量的下界,ub为变量的上界。nonlcon为[]是在没有非线性约束和等式的情况下,options是优化选择参数。


4.形式化问题(来源ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值