pytorch 基于 torch-summary 及 thop 输出模型结构、参数量、GFLOPs等信息

该文介绍了如何利用pip安装torch-summary和thop库,然后展示如何在PyTorch中运用这些工具来对模型进行摘要总结以及计算FLOPs操作数,以评估模型的计算复杂度。修改profile.py中的代码以避免维度错误问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pip install torch-summary
pip install thop

e.g.

stmap = ubfc_dataset[0]["stmap"].unsqueeze(dim=0).cuda()
model = BVP_estimator().cuda()

# summary
from torchsummary import summary
summary(model,stmap)

# 计算flops
from thop import profile
flops, params = profile(model, inputs=stmap)
print(f"Total FLOPs: {flops / 10**9} G")
print(f"Total params: {params / 10**6} M")

最好将 profile.py 中的

 with torch.no_grad():
     model(*inputs)

改为

 with torch.no_grad():
     model(inputs)

否则可能吞维度

### YOLOv11目标检测模型性能评估指标解析 #### mAP50 的含义及用途 mAP50 是一种衡量目标检测模型精度的重要指标,表示在 IoU 阈值为 0.5 的情况下计算得到的平均精度均值 (mean Average Precision)[^1]。该指标通过统计不同类别上的 AP 值并取其平均值得到,能够全面反映模型对于各类别的预测能力。 #### FPS 的定义及其意义 FPS(Frames Per Second)代表每秒处理帧数,用来描述模型推理速度的一个重要指标。较高的 FPS 表明模型能够在单位时间内完成更多图像或视频帧的处理任务,在实时应用中尤为重要。 #### GFLOPs 解析 GFLOPs(Giga Floating-point Operations Per Second),即十亿次浮点运算/秒,是用来量化神经网络计算复杂度的一项标准。较低的 GFLOPs 数值通常意味着更少的操作次数需求,从而可能带来更快的速度或者更低能耗的表现。 #### 参数量的作用与影响 参数量指的是构成深度学习模型所需权重数量总。较大的参数规模往往可以提升表达能力准确性,但也可能导致过拟合现象发生以及增加存储空间占用;反之,则可能会限制模型捕获数据特征的能力。 ```python def calculate_gflops(model, input_size=(3, 224, 224)): from thop import profile inputs = torch.randn(1, *input_size) macs, params = profile(model, inputs=(inputs,)) gflops = macs / 1e9 return gflops ``` 上述代码片段展示了一个简单方法来估算给定 PyTorch 模型对应的 GFLOPs 值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

下里巴米

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值