自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 windows和ubuntu18.04双系统

首先:整体流程参照以下流程安装https://www.cnblogs.com/masbay/p/11627727.html问题1:联想进入bios与boot manager问题2:重启按压任何按键都无法进入bios或者boot manager。

2023-10-07 22:42:26 108 2

原创 ORB-slam2实验数据分析

(1)运行得到轨迹数据 CameraTrajectory.txt(2)将数据集中的目录的 groundtruth.txt , 以轨迹数据复制到同一个文件夹Result_analysis。

2023-10-05 21:38:44 479

原创 同步错误记录

Framebuffer with requested attributes not available. Using available framebuffer. You may see visual artifacts.New map created with 940 points

2023-09-27 16:51:04 143 1

原创 ORB-SLAM2运行RGBD数据

(1)系统已有 Python 2.7(2)下载associate.py地址:http://vision.in.tum.de/data/datasets/rgbd-dataset/tools。

2023-09-23 23:30:21 496 1

原创 Pytorch 深度学习实践(3)

如果使用梯度下降训练失败,大概率是学习率太大问题:计算梯度时,计算整个样本的平均梯度,有可能在鞍点(局部最小值)就停止学习。

2023-09-04 21:40:33 80 1

原创 pytorch深度学习实践(1)

(3)在训练神经网络时,在初始化模型参数后,我们交替使用前向传播和反向传播,基于反向传播计算得到的梯度,结合随机梯度下降优化算法(或者 Adam 等其他优化算法)来更新模型参数。(1)前向传播在神经网络定义的计算图中按顺序计算和存储中间变量,它的顺序是从输入层到输出层。(2)反向传播按相反的顺序(从输出层到输入层)计算参数的梯度。主要使用求偏导的链式法则。我下载的 pytorch 2.0.1。1.传统机器学习模型选择方式。老师的pytorch 0.4。

2023-08-30 11:23:13 47

原创 深度学习笔记

尽管全连接层在神经网络中起着重要作用,但是对于处理大规模输入数据,特别是图像数据等,全连接层的参数数量很大,容易导致过拟合和计算负担。(1)特征提取:卷积层通过滑动一个小的卷积核(也称为过滤器或滤波器)在输入数据上进行卷积运算,以捕捉输入数据中的局部特征。(2)参数共享:在卷积操作中,卷积核的参数被共享,这意味着同一个卷积核在输入数据的不同位置使用相同的参数。(3)稀疏连接:与全连接层不同,卷积层中的每个神经元仅与输入数据的一小部分区域相连接,这使得卷积层具有稀疏连接性。

2023-08-29 16:54:41 40 1

原创 clion无法输入中文问题

添加 -Drecreate.x11.input.method=true 到文件最后一行。在Clion中点击顶部菜单栏中的 Help -> Edit Custom VM options,会创建或打开一个叫clion.vmoptions的文件。重启Clion,应该就可以正常输入中文了。

2023-07-21 17:12:08 764 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除