- 博客(8)
- 收藏
- 关注
原创 windows和ubuntu18.04双系统
首先:整体流程参照以下流程安装https://www.cnblogs.com/masbay/p/11627727.html问题1:联想进入bios与boot manager问题2:重启按压任何按键都无法进入bios或者boot manager。
2023-10-07 22:42:26 108 2
原创 ORB-slam2实验数据分析
(1)运行得到轨迹数据 CameraTrajectory.txt(2)将数据集中的目录的 groundtruth.txt , 以轨迹数据复制到同一个文件夹Result_analysis。
2023-10-05 21:38:44 479
原创 同步错误记录
Framebuffer with requested attributes not available. Using available framebuffer. You may see visual artifacts.New map created with 940 points
2023-09-27 16:51:04 143 1
原创 ORB-SLAM2运行RGBD数据
(1)系统已有 Python 2.7(2)下载associate.py地址:http://vision.in.tum.de/data/datasets/rgbd-dataset/tools。
2023-09-23 23:30:21 496 1
原创 Pytorch 深度学习实践(3)
如果使用梯度下降训练失败,大概率是学习率太大问题:计算梯度时,计算整个样本的平均梯度,有可能在鞍点(局部最小值)就停止学习。
2023-09-04 21:40:33 80 1
原创 pytorch深度学习实践(1)
(3)在训练神经网络时,在初始化模型参数后,我们交替使用前向传播和反向传播,基于反向传播计算得到的梯度,结合随机梯度下降优化算法(或者 Adam 等其他优化算法)来更新模型参数。(1)前向传播在神经网络定义的计算图中按顺序计算和存储中间变量,它的顺序是从输入层到输出层。(2)反向传播按相反的顺序(从输出层到输入层)计算参数的梯度。主要使用求偏导的链式法则。我下载的 pytorch 2.0.1。1.传统机器学习模型选择方式。老师的pytorch 0.4。
2023-08-30 11:23:13 47
原创 深度学习笔记
尽管全连接层在神经网络中起着重要作用,但是对于处理大规模输入数据,特别是图像数据等,全连接层的参数数量很大,容易导致过拟合和计算负担。(1)特征提取:卷积层通过滑动一个小的卷积核(也称为过滤器或滤波器)在输入数据上进行卷积运算,以捕捉输入数据中的局部特征。(2)参数共享:在卷积操作中,卷积核的参数被共享,这意味着同一个卷积核在输入数据的不同位置使用相同的参数。(3)稀疏连接:与全连接层不同,卷积层中的每个神经元仅与输入数据的一小部分区域相连接,这使得卷积层具有稀疏连接性。
2023-08-29 16:54:41 40 1
原创 clion无法输入中文问题
添加 -Drecreate.x11.input.method=true 到文件最后一行。在Clion中点击顶部菜单栏中的 Help -> Edit Custom VM options,会创建或打开一个叫clion.vmoptions的文件。重启Clion,应该就可以正常输入中文了。
2023-07-21 17:12:08 764 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人