借助CIFAR10模型结构理解卷积神经网络及Sequential的使用

 CIFAR10模型搭建

CIFAR10模型结构

0. input 3@32x323通道32x32的图片 --> 特征图(Feature maps) : 32@32x32
即经过323@5x5的卷积层,输出尺寸没有变化(有x个特征图即有x个卷积核。卷积核的通道数与输入的通道数相等,即3@5x5)。
两种方法推导出padding = 2stride = 1的值:

公式法:

𝐻𝑜𝑢𝑡=32,𝐻𝑖𝑛=32,dilation = 1(默认值,此时没有空洞),kernel_size = 5

理论法:为保持输出尺寸不变,padding都是卷积核大小的一半,则有padding=kernel_size/2;奇数卷积核把中心格子对准图片第一个格子,卷积核在格子外有两层那么padding=2

1.input 32@32x32 --> output : 32@16x16
即经过2x2的最大池化层,stride = 2(池化层的步长为池化核的尺寸),padding = 0,特征图尺寸减小一半。
2.input 32@16x16 --> output : 32@16x16
即即经过323@5x5的卷积层,输出尺寸没有变化。padding = 2stride = 1
3.input : 32@16x16 --> output : 32@8x8
即经过2x2的最大池化层,stride = 2padding = 0,通道数不变,特征图尺寸减小一半。
4.input : 32@8x8 --> output : 64@8x8
即即经过643@5x5的卷积层,输出尺寸没有变化。padding = 2stride = 1
5.input : 64@8x8 --> output : 64@4x4
即经过2x2的最大池化层,stride = 2,padding = 0,通道数不变,特征图尺寸减小一半。
6.input:64@4x4-->output :1×1024
即经过展平层 Flatten 作用,将64@4x4的特征图依次排开。

7.input:1×1024-->output :​​​​​​​1×64
即经过线性层Linear1的作用。
8.input:1×64-->output:1×10
即经过线性层Linear2的作用。

代码验证:
按照网络结构一层一层搭建网络结构。
示例1:

# 导入需要用到的库
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


# 搭建CIFAR10模型网络
class Tudui(nn.Module):

    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(3, 32, 5, padding=2) # 第一个卷积层
        self.maxpool1 = MaxPool2d(2) # 第一个最大池化层

        self.conv2 = Conv2d(32, 32, 5, padding=2) # 第二个卷积层
        self.maxpool2 = MaxPool2d(2) # 第二个最大池化层

        self.conv3 = Conv2d(32, 64, 5, padding=2) # 第三个卷积层
        self.maxpool3 = MaxPool2d(2) # 第三个最大池化层

        self.flatten = Flatten() # 展平层

        # 两个线性层
        self.linear1 = Linear(1024, 64) # 第一个线性层
        self.linear2 = Linear(64, 10) # 第二个线性层

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


tudui = Tudui() # 实例化
print(tudui) # 观察网络信息
input = torch.ones((64, 3, 32, 32)) # 为网络创建假想输入,目的是检查网络是否正确
output = tudui(input) # 输出
print(output.shape) # torch.Size([64, 10]),结果与图片结果一致

 运行结果:

# 两个print出的内容分别为:
Tudui(
  (conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear1): Linear(in_features=1024, out_features=64, bias=True)
  (linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 10])

Sequential的使用

        当模型中只是简单的前馈网络时,即上一层的输出直接作为下一层的输入,这时可以采用torch.nn.Sequential()模块来快速搭建模型,而不必手动在forward()函数中一层一层地前向传播。因此,如果想快速搭建模型而不考虑中间过程的话,推荐使用torch.nn.Sequential()模块。

接下来用torch.nn.Sequential()改写示例 1,示例 2 如下。
示例2:

# 导入需要用到的库
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential


# 搭建CIFAR10模型网络
class Tudui(nn.Module):

    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
             Conv2d(3, 32, 5, padding=2),  # 第一个卷积层
             MaxPool2d(2),  # 第一个最大池化层

             Conv2d(32, 32, 5, padding=2), # 第二个卷积层
             MaxPool2d(2), # 第二个最大池化层

             Conv2d(32, 64, 5, padding=2),  # 第三个卷积层
             MaxPool2d(2),  # 第三个最大池化层

             Flatten(),  # 展平层

             # 两个线性层
             Linear(1024, 64),  # 第一个线性层
             Linear(64, 10)  # 第二个线性层
        )


    def forward(self, x):
        x = self.model1(x)
        return x


tudui = Tudui() # 实例化
print(tudui) # 观察网络信息
input = torch.ones((64, 3, 32, 32)) # 为网络创建假想输入,目的是检查网络是否正确
output = tudui(input) # 输出
print(output.shape) # torch.Size([64, 10]),结果与图片结果一致

运行结果:

# 两个print出来的结果分别为:
Tudui(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
torch.Size([64, 10])

        我们发现,使用Sequential之后得到的结果(示例2)与按照前向传播一层一层搭建得到的结果(示例1)一致,使用Sequential之后可以使得forward函数中的内容得以简化。

使用tensorboard实现网络结构可视化

# 导入需要用到的库
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter

# 搭建CIFAR10模型网络



class Tudui(nn.Module):

    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(3, 32, 5, padding=2) # 第一个卷积层
        self.maxpool1 = MaxPool2d(2) # 第一个最大池化层

        self.conv2 = Conv2d(32, 32, 5, padding=2) # 第二个卷积层
        self.maxpool2 = MaxPool2d(2) # 第二个最大池化层

        self.conv3 = Conv2d(32, 64, 5, padding=2) # 第三个卷积层
        self.maxpool3 = MaxPool2d(2) # 第三个最大池化层

        self.flatten = Flatten() # 展平层

        # 两个线性层
        self.linear1 = Linear(1024, 64) # 第一个线性层
        self.linear2 = Linear(64, 10) # 第二个线性层

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


tudui = Tudui() # 实例化
print(tudui) # 观察网络信息
input = torch.ones((64, 3, 32, 32)) # 为网络创建假想输入,目的是检查网络是否正确
output = tudui(input) # 输出
print(output.shape) # torch.Size([64, 10]),结果与图片结果一致

# 使用tensorboard实现网络可视化
writer = SummaryWriter("./log_sequential")
writer.add_graph(tudui, input)
writer.close()

运行上述代码,则会在项目文件夹CIFAR10model中出现对应的日志文件夹log_sequential。

随后打开Terminal,如下图所示。

 输入tensorboard --logdir=log_sequential,如下图所示。

按下Enter键,得到一个网址,如下图所示。

 打开这个网址,得到可视化界面。

我们点开搭建好的网络Tudui,可以得到更具体的网络每一层,如下图所示。

我们将其放大,如下图所示。 

网络中的每一层
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,让我们来实现一个基于卷神经网络的图像去噪模型来处理CIFAR10数据集。 首先,我们需要加载CIFAR10数据集并进行预处理。我们可以使用PyTorch中的`torchvision`库来完成这个任务。以下是加载CIFAR10数据集的代码: ```python import torch import torchvision.transforms as transforms import torchvision.datasets as datasets # 定义数据预处理 transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) # 加载CIFAR10数据集 train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=4) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=4) ``` 接下来,我们将定义一个卷神经网络模型来进行图像去噪。我们采用类似于自编码器的结构,将输入的图像压缩成一个低维编码,然后解码成与原始图像尺寸相同的输出。这个过程可以通过卷神经网络来实现。我们采用以下网络结构: ```python import torch.nn as nn class DenoiseNet(nn.Module): def __init__(self): super(DenoiseNet, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), ) self.decoder = nn.Sequential( nn.ConvTranspose2d(128, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(32, 3, kernel_size=3, stride=2, padding=1, output_padding=1), nn.Tanh() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x ``` 在这个模型中,我们采用了两个卷层和一个池化层来进行编码,然后采用三个反卷层来进行解码。最后一层采用Tanh激活函数来保证输出值在-1到1之间。这个模型可以通过以下代码来进行训练: ```python import torch.optim as optim # 定义模型 model = DenoiseNet() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters()) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): train_loss = 0.0 for i, data in enumerate(train_loader): # 前向传播 inputs, _ = data noisy_inputs = inputs + 0.1 * torch.randn(inputs.shape) # 加入高斯噪声 outputs = model(noisy_inputs) # 计算损失函数 loss = criterion(outputs, inputs) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 统计损失函数值 train_loss += loss.item() * inputs.size(0) # 打印训练信息 train_loss /= len(train_loader.dataset) print('Epoch [{}/{}], Train Loss: {:.4f}'.format(epoch+1, num_epochs, train_loss)) ``` 在训练过程中,我们将输入图像加入高斯噪声来模拟真实场景下的图像噪声。训练过程中,我们采用均方误差损失函数来衡量重建图像与原始图像之间的差距。最后,我们可以使用以下代码来测试模型并可视化一些结果: ```python import matplotlib.pyplot as plt # 测试模型 model.eval() test_loss = 0.0 with torch.no_grad(): for i, data in enumerate(test_loader): # 前向传播 inputs, _ = data noisy_inputs = inputs + 0.1 * torch.randn(inputs.shape) # 加入高斯噪声 outputs = model(noisy_inputs) # 计算损失函数 loss = criterion(outputs, inputs) # 统计损失函数值 test_loss += loss.item() * inputs.size(0) # 可视化一些结果 if i == 0: fig, axs = plt.subplots(2, 5, figsize=(10, 4)) for j in range(5): axs[0, j].imshow(noisy_inputs[j].permute(1, 2, 0)) axs[1, j].imshow(outputs[j].permute(1, 2, 0)) fig.suptitle('Noisy Images (top) and Denoised Images (bottom)') plt.show() # 打印测试信息 test_loss /= len(test_loader.dataset) print('Test Loss: {:.4f}'.format(test_loss)) ``` 我们可以通过观察可视化的结果和测试信息来评估我们的模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值