矩阵论—线性子空间、生成子空间、核空间、零度、子空间的交与和、直和

线性子空间定义 

 如果V1称为平凡子空间,否则称为非平凡子空间。

生成子空间

 

核空间、零度 

 解:

rank(A)=2; n(A)=N-rank(A)=3-2=1,这里N表示的是未知量的个数。
n(A)也可以理解为基础解系的个数,即基础解系中有几个向量。

结论:
(1)rnak(A) + n(A) = A 的列数
(2)n(A) - n(A^T) = (A的列数) -(A的行数)

子空间的交与和

 例题:

直和 

综合例题:

 解:

 再例如:

 

再例如: 

再求两个子空间交的维数:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值