(一)入门

Hive是Facebook基于Hadoop开发的数据仓库工具,它允许用户通过类SQL查询语言HQL处理大数据。Hive中的数据存储在HDFS,查询由MapReduce(或可选的Spark、Tez)执行。元数据存储在Metastore,通常推荐使用MySQL以支持多用户。解析器、优化器和执行器负责处理查询的生命周期,从SQL解析到生成执行计划并返回结果。
摘要由CSDN通过智能技术生成

1.简介

Hive是由Facebook开源,基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供SQL查询功能。

 

Hive是一个Hadoop客户端,用于HQLHive SQL转化成MapReduce程序

(1)Hive中每张表的数据存储在HDFS

(2)Hive分析数据底层的实现是MapReduce(也可配置为Spark或者Tez)

(3)执行程序运行在Yarn上

2.架构

1)用户接口:Client

CLI(command-line interface)、JDBC/ODBC。

说明:JDBC和ODBC的区别。

(1)JDBC的移植性比ODBC好;(通常情况下,安装完ODBC驱动程序之后,还需要经过确定的配置才能够应用。而不相同的配置在不相同数据库服务器之间不能够通用。所以,安装一次就需要再配置一次。JDBC只需要选取适当的JDBC数据库驱动程序,就不需要额外的配置。在安装过程中,JDBC数据库驱动程序会自己完成有关的配置。)

(2)两者使用的语言不同,JDBC在Java编程时使用,ODBC一般在C/C++编程时使用。

2)元数据:Metastore

元数据包括:数据库(默认是default)、表名、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等。

默认存储在自带的derby数据库中,由于derby数据库只支持单客户端访问,生产环境中为了多人开发,推荐使用MySQL存储Metastore。

3)驱动器:Driver

(1)解析器(SQLParser):将SQL字符串转换成抽象语法树(AST)

(2)语义分析(Semantic Analyzer):将AST进一步划分为QeuryBlock

(3)逻辑计划生成器(Logical Plan Gen):将语法树生成逻辑计划

(4)逻辑优化器(Logical Optimizer):对逻辑计划进行优化

(5)物理计划生成器(Physical Plan Gen):根据优化后的逻辑计划生成物理计划

(6)物理优化器(Physical Optimizer):对物理计划进行优化

(7)执行器(Execution):执行该计划,得到查询结果并返回给客户端 

4Hadoop

使用HDFS进行存储,可以选择MapReduce/Tez/Spark进行计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值